Article
Keywords:
Prime submodule; primary submodule; primary decomposition; Associated primes
Summary:
We characterize prime submodules of $R\times R$ for a principal ideal domain $R$ and investigate the primary decomposition of any submodule into primary submodules of $R\times R.$
References:
[2] C. P. Lu:
Prime submodules of modules. Comm. Math. Univ. Sancti. Pauli 33 (1984), 61–69.
MR 0741378 |
Zbl 0575.13005
[3] C. P. Lu:
$M$-radicals of submodules in modules. Math. Japon. 34 (1989), no. 2, 211–219.
MR 0994584 |
Zbl 0706.13002
[4] C. P. Lu:
$M$-radicals of submodules in modules II. Math. Japon. 35 (1990), no. 5, 991–1001.
MR 1073902 |
Zbl 0719.13001
[5] S. M. George, R. Y. McCasland and P. F. Smith:
A principal ideal theorem analogue for modules over commutative rings. Comm. Algebra 22 (6) (1994), 2083–2099.
DOI 10.1080/00927879408824957 |
MR 1268545
[8] H. Matsumura:
Commutative Ring Theory. Cambridge University Press, 1980.
MR 0879273