Title:
|
The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized (English) |
Author:
|
Emmanuele, G. |
Author:
|
John, K. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
75-82 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Keyword:
|
spaces of linear operators |
Keyword:
|
copies of $c_0$ |
Keyword:
|
approximation properties |
MSC:
|
46A32 |
MSC:
|
46B03 |
MSC:
|
46B25 |
MSC:
|
46B28 |
MSC:
|
47L05 |
idZBL:
|
Zbl 1040.46019 |
idMR:
|
MR1745461 |
. |
Date available:
|
2009-09-24T10:30:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127550 |
. |
Reference:
|
[1] J. Diestel, T. J. Morrison: The Radon-Nikodym property for the space of operators.Math. Nachr. 92 (1979), 7–12. MR 0563569, 10.1002/mana.19790920102 |
Reference:
|
[2] G. Emmanuele: Dominated operators on $C[0,1]$ and the (CRP).Collect. Math. 41(1) (1990), 21–25. Zbl 0752.47006, MR 1134442 |
Reference:
|
[3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Philos. Soc. 111 (1992), 331–335. MR 1142753, 10.1017/S0305004100075435 |
Reference:
|
[4] G. Emmanuele, K. John: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J (to appear). MR 1435603 |
Reference:
|
[5] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196–205. Zbl 0411.46009, MR 0575060, 10.1215/ijm/1256047715 |
Reference:
|
[6] K. John: On the uncomplemented subspace $K(X,Y)$.Czechoslovak Math. J. 42 (1992), 167–173. Zbl 0776.46016, MR 1152178 |
Reference:
|
[7] N. J. Kalton: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152 |
Reference:
|
[8] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces.EMG 92 Springer Verlag, 1977. MR 0500056 |
Reference:
|
[9] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces.EMG 97 Springer Verlag, 1979. MR 0540367 |
Reference:
|
[10] A. Pełczyński: A connection between weak unconditional convergence and weak sequential completeness in Banach spaces.Bull. Acad. Polon. Sci. 6 (1958), 251–253. MR 0115072 |
. |