Previous |  Up |  Next

Article

Title: The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized (English)
Author: Emmanuele, G.
Author: John, K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 75-82
Summary lang: English
.
Category: math
.
Keyword: spaces of linear operators
Keyword: copies of $c_0$
Keyword: approximation properties
MSC: 46A32
MSC: 46B03
MSC: 46B25
MSC: 46B28
MSC: 47L05
idZBL: Zbl 1040.46019
idMR: MR1745461
.
Date available: 2009-09-24T10:30:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127550
.
Reference: [1] J. Diestel, T. J. Morrison: The Radon-Nikodym property for the space of operators.Math. Nachr. 92 (1979), 7–12. MR 0563569, 10.1002/mana.19790920102
Reference: [2] G. Emmanuele: Dominated operators on $C[0,1]$ and the (CRP).Collect. Math. 41(1) (1990), 21–25. Zbl 0752.47006, MR 1134442
Reference: [3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Philos. Soc. 111 (1992), 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [4] G. Emmanuele, K. John: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J (to appear). MR 1435603
Reference: [5] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196–205. Zbl 0411.46009, MR 0575060, 10.1215/ijm/1256047715
Reference: [6] K. John: On the uncomplemented subspace $K(X,Y)$.Czechoslovak Math. J. 42 (1992), 167–173. Zbl 0776.46016, MR 1152178
Reference: [7] N. J. Kalton: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [8] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces.EMG 92 Springer Verlag, 1977. MR 0500056
Reference: [9] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces.EMG 97 Springer Verlag, 1979. MR 0540367
Reference: [10] A. Pełczyński: A connection between weak unconditional convergence and weak sequential completeness in Banach spaces.Bull. Acad. Polon. Sci. 6 (1958), 251–253. MR 0115072
.

Files

Files Size Format View
CzechMathJ_50-2000-1_10.pdf 322.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo