Previous |  Up |  Next

Article

Summary:
A workable nonstandard definition of the Kurzweil-Henstock integral is given via a Daniell integral approach. This allows us to study the HL class of functions from . The theory is recovered together with a few new results.
References:
[albev] S. Albeverio, J. E. Fenstad, R. Høegh-Krohn, and T. Lindstrøm: Nonstandard methods in stochastic analysis and mathematical physics. Academic Press, Orlando, 1986. MR 0859372
[ben] B. Benninghofen: Superinfinitesimals and the calculus of the generalized Riemann integral. Models and sets (Aachen, 1983), Lect. Notes in Math., 1103, Springer, Berlin-New York, pp. 9–52. MR 0775686 | Zbl 0583.26005
[bi] R. Bianconi: A note on frameworks of nonstandard analysis, in preparation.
[bipra] R. Bianconi, J. C. Prandini: Nonstandard Henstock-Kurzweil integralProc. 42nd. SBA. (1995, 669–681).
[revHe] R. Henstock: Review of. Mathematical Reviews, 86g:26008.
[he] R. Henstock: Lectures on the theory of integration. Series in Real Analysis Volume 1, World Scientific, Singapore, 1988. MR 0963249 | Zbl 0668.28001
[hurdloeb] A. E. Hurd, P. A. Loeb: An introduction to nonstandard real analysis. Academic Press, Orlando, 1985. MR 0806135
[keisler] H. J. Keisler: Elementary calculus. Prindle, Weber and Schmidt, Boston, 1976. Zbl 0325.26001
[lanzhou] Lee Peng-Yee: Lanzhou lectures on Henstock integration. Series in Real Analysis Volume 2, World Scientific, Singapore, 1989. MR 1050957 | Zbl 0699.26004
[schwabik] S. Schwabik: Generalized ordinary differential equations. Series in Real Analysis Volume 5, World Scientific, Singapore, 1992. MR 1200241 | Zbl 0781.34003
Partner of
EuDML logo