Previous |  Up |  Next

Article

References:
[A-F] M. Anderson and T. Feil: Lattice-Ordered Groups (An Introduction). Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988. MR 0937703
[B-S] S. Burris and H. P. Sankappanavar: A Course in Universal ALgebra. Springer, New York-Heidelberg-Berlin, 1981. MR 0648287
[G$\ell $-Ho-Mc] A. M. W. Glass, W. C. Holland and S. H. McCleary: The structure of $\ell $-group varieties. Alg. Univ. 10 (1980), 1–20. DOI 10.1007/BF02482885 | MR 0552151
[Gi-L] M. Giraudet and F. Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75–89. DOI 10.4064/fm-139-2-75-89 | MR 1150592
[Ho1] W. C. Holland: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J. 10 (1963), 399–408. DOI 10.1307/mmj/1028998976 | MR 0158009
[Ho2] W. C. Holland: The largest proper variety of lattice-ordered groups. Proc. Amer. Math. Soc. 57 (1976), 25–28. DOI 10.1090/S0002-9939-1976-0406902-0 | MR 0406902 | Zbl 0339.06011
[Ho3] W. C. Holland: Varieties of $\ell $-groups are torsion classes. Czechoslovak Math. J. 29(104) (1979), 11–12. MR 0518135
[Hu-Re] M. E. Huss and N. R. Reilly: On reversing the order of a lattice-ordered group. J. Algebra 91 (1984), 176–191. DOI 10.1016/0021-8693(84)90133-9 | MR 0765778
[K-M1] V. M. Kopytov and N. Ya. Medvedev: On varieties of lattice ordered groups. Alg. i Log. 10 (1977), 417–423. MR 0552651
[K-M2] V. M. Kopytov and N. Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht, 1994. MR 1369091
[Ma1] J. Martinez: Varieties of lattice ordered groups. Math. Zeit. 137 (1974), 265–284. DOI 10.1007/BF01214370 | MR 0354483 | Zbl 0274.20034
[Ma2] J. Martinez: Torsion theory for lattice-ordered groups. Czechoslovak Math. J. 25(100) (1975), 284–299. MR 0389705 | Zbl 0321.06020
[Ra] M. Rabin: Universal groups of automorphisms of models. Proc. of the 1963 Int. Symp. at Berkeley, J. W. Addison, L. Henkin and A. Tarski (eds.), North Holland, Amsterdam, 1965, pp. 274–284. MR 0201307 | Zbl 0163.24701
[Re] N. R. Reilly: Varieties of lattice-ordered groups. Lattice-Ordered Groups (Advances and techniques), A. M. W. Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 228–277. MR 1036080
Partner of
EuDML logo