[1] J. C. Alexander, J. A. Yorke:
Global bifurcation of periodic orbits. Amer. J. Math. 100 (1978), no. 2, 263–292.
DOI 10.2307/2373851 |
MR 0474406
[2] J. P. Aubin, A. Cellina:
Differential Inclusions. Springer Verlag, Berlin, 1984.
MR 0755330
[3] M. Bosák, M. Kučera:
A bifurcation of periodic solutions to differential inequalities in $\mathbb{R}^3$. Czechoslovak Math. J. 42 (117) (1992), 339–363.
MR 1179505
[5] J. Eisner, M. Kučera:
Hopf bifurcation and ordinary differential inequalities. Czechoslovak Math. J. 45 (120) (1995), no. 4, 577–608.
MR 1354920
[6] M. Kučera:
Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (107) (1982), 208–226.
MR 0654057
[7] M. Kučera:
A global continuation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J. 38 (133) (1988), 120–137.
MR 0925946
[8] M. Kučera:
Bifurcation of periodic solutions to ordinary differential inequalities. In: Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255.
MR 1468758
[10] J. Kurzweil:
Ordinary Differential Equations. Studies in Applied Mechanics 13. Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986.
MR 0929466
[11] J. L. Lions:
Quelques méthodes de resolution de problemes aux limites non linéaires. Paris, 1969.
MR 0259693
[12] J. E. Marsden, M. Mc Cracken:
The Hopf Bifurcation Theorem and Applications. Springer, Berlin, 1976.
MR 0494309
[14] E. H. Zarantonello:
Projections on convex sets in Hilbert space and spectral theory. In: Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971.
Zbl 0281.47043