Previous |  Up |  Next

Article

Keywords:
$\alpha_3$; $\alpha_4$; $\beta_3$; $\beta_4$ spaces; $\Phi$-space; product space; sequential space; sequentially subtransverse; strongly Fréchet; transverse
Summary:
A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.
References:
[1] A. V. Arhangel’skii: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. (1981), 164–200.
[2] S. Dolecki and S. Sitou: Precise bounds for sequential order of products of some Fréchet topologies. Topology Appl. (to appear). MR 1611269
[3] E. K. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163–164. DOI 10.1016/0166-8641(92)90026-V | MR 1192305 | Zbl 0759.54013
[4] R. Engelking: General Topology. PWN Warszawa (1977). MR 0500780 | Zbl 0373.54002
[5] E. Michael: A quintuple quotient quest. General Topology Appl. 2 (1972), 91–138. DOI 10.1016/0016-660X(72)90040-2 | MR 0309045 | Zbl 0238.54009
[6] E. Michael: A note on closed maps and compact sets. Israel J. Math. 2 (1964), 174–176. MR 0177396 | Zbl 0136.19303
[7] T. Nogura: Fréchetness of inverse limits and products. Topology and Appl. 20 (1985), 59–66. DOI 10.1016/0166-8641(85)90035-5 | MR 0798445 | Zbl 0605.54019
[8] T. Nogura: The product of $\langle \alpha _i\rangle $-spaces. Topology and Appl. 21 (1985), 251–259. MR 0812643
[9] J. Novák: On convergence group. Czechoslovak Math. J. 20 (1970), 357–374. MR 0263973
[10] P. Nyikos: The Cantor tree and the Fréchet-Urysohn property. Annals N.Y. Acad. Sc. 552 (1989), 109–123. DOI 10.1111/j.1749-6632.1989.tb22391.x | MR 1020779 | Zbl 0894.54021
[11] P. Nyikos: Subsets of $^\omega \omega $ and the Fréchet-Urysohn and $\alpha _i$-properties. Topology Appl. 48 (1992), 91–116. DOI 10.1016/0166-8641(92)90021-Q | MR 1195504 | Zbl 0774.54019
[12] V. V  Popov and D. V. Rančin: On certain strengthening of the property of Fréchet-Urysohn. Vest. Moscow Univ. 2 (1978), 75–80.
[13] Y. Tanaka: Products of sequential spaces. Proc. Amer. Math. Soc. 54 (1976), 371–375. DOI 10.1090/S0002-9939-1976-0397665-6 | MR 0397665 | Zbl 0292.54025
Partner of
EuDML logo