[1] P. Emanovský:
Convex isomorphic ordered sets. Mathematica Bohemica 18 (1993), 29–35.
MR 1213830
[2] V. I. Igošin: Selfduality of lattices of intervals of finite lattices. Inst. Matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Mal’ceva, Tezisy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, p. 48.
[3] V. I. Igošin:
Lattices of intervals and lattices of convex sublattices of lattices. Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69–76.
MR 0945975
[4] V. I. Igošin:
Identities in interval lattices of lattices. Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491–501.
MR 0724279
[5] V. I. Igošin:
On lattices with restriction on their intervals. Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209–216.
MR 0860266
[6] V. I. Igošin:
Algebraic characteristic of lattices of intervals. Uspechi matem. nauk 40 (1985), 205–206.
MR 0795195
[7] V. I. Igošin:
Semimodularity in lattices of intervals. Math. Slovaca 38 (1988), 305–308.
MR 0978760
[8] J. Jakubík:
Selfduality of the system of intervals of a partially ordered set. Czechoslovak Math. J. 41 (1991), 135–140.
MR 1087633
[9] J. Jakubík: Partially ordered sets having selfdual system of intervals. (Submitted).
[10] J. Jakubík: Partially ordered sets with isomorphic systems of intervals. (Submitted).
[11] J. Jakubík, J. Lihová:
Systems of intervals of partially ordered sets. Math. Slovaca, to appear.
MR 1472629
[13] J. Lihová:
Posets having a selfdual interval poset. Czechoslov. Math. J. 44 (1994), 523–533.
MR 1288170
[14] J. Lihová: On posets with isomorphic interval posets. (Submitted).
[15] V. Slavík:
On lattices with isomorphic interval lattices. Czechoslov. Math. J. 35 (1985), 550–554.
MR 0809041