Article
Summary:
We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
References:
[1] I. Chon: Lie group and control theory. Ph.D. Thesis, Louisiana State University, 1988.
[2] M. Fekete: Ueber ein Problem von Laguerre. Rendiconti del Circolo Matematico di Palermo 34 (1912), 92–93.
[3] F. R. Gantmacher:
The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960.
MR 1657129
[4] S. Karlin:
Total Positivity vol. 1. Stanford University Press, 1968.
MR 0230102
[6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2. Springer-Velag, 1964.