Article
Keywords:
lattice ordered group valued function and measure; Kurzweil-Henstock construction of an integral; limit theorems
Summary:
This paper generalizes the results of papers which deal with the Kurzweil-Henstock construction of an integral in ordered spaces. The definition is given and some limit theorems for the integral of ordered group valued functions defined on a Hausdorff compact topological space $T$ with respect to an ordered group valued measure are proved in this paper.
References:
[1] Boccuto, A.:
Riesz spaces, integration and sandwich theorems. Tatra Mountains Math. Publ. 3 (1993), 213–230.
MR 1278536 |
Zbl 0815.28007
[2] Duchoň, M. – Riečan, B.:
On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mountains Math. Publ 8 (1996), 133–141.
MR 1475272
[3] Haluška, J.:
On integration in complete vector lattices. Tatra Mountains Math. Publ. 3 (1993), 201–212.
MR 1278535
[5] Kurzweil, J.:
Nicht absolut konvergente Integrale. Teubner Leipzig, 1980.
MR 0597703
[6] Riečan, B.:
On the Kurzweil integral in compact topological spaces. Rad. Mat. 2 (1986), 151–163.
MR 0873695
[7] Riečan, B.:
On the Kurzweil integral for functions with values in ordered spaces I. Acta Math. Univ. Comeniana 56–57 (1990), 75–83.
MR 1083014
[8] Riečan, B. – Vrábelová, M.:
On the Kurzweil integral for functions with values in ordered spaces II. Math. Slov. 43 (1993), 471–475.
MR 1248980
[9] Riečan, B. – Vrábelová, M.:
On integration with respect to operator valued measures in Riesz spaces. Tatra Mountains Math. Publ. 2 (1993), 149–165.
MR 1251049
[10] Száz, A.:
The fundamental theorem of calculus in an abstract setting. Tatra Mountains Math. Publ. 2 (1993), 167–174.
MR 1251050
[11] Vrábelová, M. – Riečan, B.:
On the Kurzweil integral for functions with values in ordered spaces III. Tatra Mountains Math. Publ 8 (1996), 93–100.
MR 1475267