Previous |  Up |  Next

Article

Keywords:
lattice ordered group valued function and measure; Kurzweil-Henstock construction of an integral; limit theorems
Summary:
This paper generalizes the results of papers which deal with the Kurzweil-Henstock construction of an integral in ordered spaces. The definition is given and some limit theorems for the integral of ordered group valued functions defined on a Hausdorff compact topological space $T$ with respect to an ordered group valued measure are proved in this paper.
References:
[1] Boccuto, A.: Riesz spaces, integration and sandwich theorems. Tatra Mountains Math. Publ. 3 (1993), 213–230. MR 1278536 | Zbl 0815.28007
[2] Duchoň, M. – Riečan, B.: On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mountains Math. Publ 8 (1996), 133–141. MR 1475272
[3] Haluška, J.: On integration in complete vector lattices. Tatra Mountains Math. Publ. 3 (1993), 201–212. MR 1278535
[4] Henstock, R.: The General Theory of Integration. Oxford, 1991. MR 1134656 | Zbl 0745.26006
[5] Kurzweil, J.: Nicht absolut konvergente Integrale. Teubner Leipzig, 1980. MR 0597703
[6] Riečan, B.: On the Kurzweil integral in compact topological spaces. Rad. Mat. 2 (1986), 151–163. MR 0873695
[7] Riečan, B.: On the Kurzweil integral for functions with values in ordered spaces I. Acta Math. Univ. Comeniana 56–57 (1990), 75–83. MR 1083014
[8] Riečan, B. – Vrábelová, M.: On the Kurzweil integral for functions with values in ordered spaces II. Math. Slov. 43 (1993), 471–475. MR 1248980
[9] Riečan, B. – Vrábelová, M.: On integration with respect to operator valued measures in Riesz spaces. Tatra Mountains Math. Publ. 2 (1993), 149–165. MR 1251049
[10] Száz, A.: The fundamental theorem of calculus in an abstract setting. Tatra Mountains Math. Publ. 2 (1993), 167–174. MR 1251050
[11] Vrábelová, M. – Riečan, B.: On the Kurzweil integral for functions with values in ordered spaces III. Tatra Mountains Math. Publ 8 (1996), 93–100. MR 1475267
Partner of
EuDML logo