[AR79] Arhangel’skiǐ, A. V.:
The frequency spectrum of a topological space and the product operation. Trudy Moskovs. Mat. Obshch. 40 (1979), 171–206. (Russian)
MR 0550259
[BR74] Boehme, T. K. and Rosenfeld, M.:
An example of two compact Fréchet Hausdorff spaces, whose product is not Fréchet. J. London Math. Soc. 8 (1974), 339–344.
DOI 10.1112/jlms/s2-8.2.339 |
MR 0343242
[FV85] Frič, R. and Vojtáš, P.:
Diagonal conditions in sequential convergence. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/ Mathematische Forschung Bd. 24, Berlin, 1985, pp. 77–94.
MR 0835474
[KO85] Koutník, V.:
Closure and topological sequential convergence. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/Mathematische Forschung Bd. 24, Berlin, 1985, pp. 199–204.
MR 0835486
[KR77] Kratochvíl, P.:
Multisequences and measure. Gnereal Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976) Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha 1977, pp. 237–244.
MR 0448277
[MI72] Michael, E.:
A quintuple quotient quest. Gen. Top. Appl. 2. (1972), 91–138.
MR 0309045
[NO69] Novák, J.: On some topological spaces represented by systems of sets. Topology and its Applications (Proc. Int. Symposium, Herceg-Novi, 1968). Beograd, 1969, pp. 269–270.
[NO77] Novák, J.:
Concerning the topological product of two Fréchet spaces. Gnereal Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976), Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha 1977, pp. 342–343.
MR 0448277
[NO85] Novák, J.:
Convergence of double sequences. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/ Mathematische Forschung Bd. 24, Berlin, 1985, pp. 233–243.
MR 0835491
[SI80] Simon, P.:
A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae 21 (1980), 749–753.
MR 0597764 |
Zbl 0466.54022