[AGD1] J. M. Aarts, J. de Groot and R. H. McDowell:
Cocompactness. Nieuw Arch. Wisk. 18 (1970), 2–15.
MR 0268851
[A] A. V. Arhangel’skij:
On topological spaces which are complete in the sense of Čech. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1961), 37–40 (in Russian).
MR 0131258
[D] J. Deák:
Extending a quasi-metric. Studia Sci. Math. Hung. 28 (1993), 105–113.
MR 1250800
[vE] F. van Engelen:
Countable products of zero-dimensional absolute $F_{\sigma \delta }$ spaces. Indag. Math. 46 (1984), 391–399.
MR 0770725
[FL] P. Fletcher and W. F. Lindgren:
Quasi-uniform Spaces. Marcel Dekker, New York, 1982.
MR 0660063
[F1] Z. Frolík:
Generalizations of the $G_\delta $-property of complete metric spaces. Czech. Math. J. 10 (1960), 359–379.
MR 0116305
[F2] Z. Frolík:
On the descriptive theory of sets. Czech. Math. J. 13 (1963), 335–359.
MR 0162215
[J2] H. J. K. Junnila:
On $\sigma $-spaces and pseudometrizable spaces. Topology Proceedings 4 (1979), 121–132.
MR 0583695
[J3] H. J. K. Junnila:
On strongly zero-dimensional $F_\sigma $-metrizable stratifiable spaces. In: Topology. General and Algebraic Topology, and Applications (Proc. Internat. Topological. Confer. Leningrad, 1982), L. D. Faddeev and A. A. Mal’cev (eds.), Lecture Notes in Math. 1060, Springer Verlag, Berlin, 1984, pp. 67–75.
MR 0770226
[K] H. P. A. Künzi:
On strongly quasi-metrizable spaces. Arch. Math. (Basel) 41 (1983), 57–63.
DOI 10.1007/BF01193823
[KRS] H. P. A. Künzi, S. Romaguera and S. Salbany:
Topological spaces that admit bicomplete quasi-pseudometrics. Ann. Sci. Budapest 37 (1994), 185–195.
MR 1303429
[RS] S. Romaguera and S. Salbany:
On bicomplete quasi-pseudometrizability. Top. Appl. 50 (1993), 283–289.
MR 1227555
[Si] W. Sierpiński:
Sur une définition topologique des ensembles $F_{\sigma \delta }$. Fund. Math. 6 (1924), 24–29.
DOI 10.4064/fm-6-1-24-29
[St] A. H. Stone:
Borel and analytic metric spaces. Proc. Washington State Univ. Confer. on Gen. Topology, Pi Mu Epsilon. Washington Alpha Center, 1970, pp. 20–33.
MR 0268848 |
Zbl 0199.25804