Article
Keywords:
BCC-algebra; BCK-algebra; ideal; congruence
Summary:
We introduce a new concept of ideals in BCC-algebras and describe connections between such ideals and congruences.
References:
[1] W. A. Dudek:
The number of subalgebras of finite BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 129–136.
MR 1184464 |
Zbl 0770.06009
[2] W. A. Dudek:
On proper BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 137–150.
MR 1184465 |
Zbl 0770.06010
[3] W. A. Dudek: On constructions of BCC-algebras. Selected Papers on BCK-and BCI-algebras, 1 (1992), 93–96.
[4] K. Iséki and S. Tanaka:
Ideal theory of BCK-algebras. Math. Japonica 21 (1976), 351–366.
MR 0441816
[5] K. Iséki and S. Tanaka:
An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1–26.
MR 0500283
[6] Y. Komori:
The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13–16.
MR 0702484 |
Zbl 0516.08006
[7] Y. Komori:
The class of BCC-algebras is not a variety. Math. Japonica 29 (1984), 391–394.
MR 0752236 |
Zbl 0553.03046
[8] A. Wroński:
BCK-algebras do not form a variety. Math. Japonica 28 (1983), 211–213.
MR 0699585