Previous |  Up |  Next

Article

Keywords:
BCC-algebra; BCK-algebra; ideal; congruence
Summary:
We introduce a new concept of ideals in BCC-algebras and describe connections between such ideals and congruences.
References:
[1] W. A. Dudek: The number of subalgebras of finite BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 129–136. MR 1184464 | Zbl 0770.06009
[2] W. A. Dudek: On proper BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 137–150. MR 1184465 | Zbl 0770.06010
[3] W. A. Dudek: On constructions of BCC-algebras. Selected Papers on BCK-and BCI-algebras, 1 (1992), 93–96.
[4] K. Iséki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japonica 21 (1976), 351–366. MR 0441816
[5] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1–26. MR 0500283
[6] Y. Komori: The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13–16. MR 0702484 | Zbl 0516.08006
[7] Y. Komori: The class of BCC-algebras is not a variety. Math. Japonica 29 (1984), 391–394. MR 0752236 | Zbl 0553.03046
[8] A. Wroński: BCK-algebras do not form a variety. Math. Japonica 28 (1983), 211–213. MR 0699585
Partner of
EuDML logo