Previous |  Up |  Next

Article

Keywords:
distributive; medial; groupoid
Summary:
After enumerating isomorphism types of at most five-element left distributive groupoids, we prove that a distributive groupoid with less than 81 elements is necessarily medial.
References:
[1] R. El. Bashir and A. Drápal: Quasitrivial left distributive groupoids. Commentationes Math. Univ. Carolinae 35 (1994), 597–606. MR 1321230
[2] G. Bol: Gewebe und Gruppen. Math. Ann. 114 (1937), 414–431. DOI 10.1007/BF01594185 | MR 1513147 | Zbl 0016.22603
[3] A. Drápal, T. Kepka and M. Musílek: Group conjugation has non-trivial LD-identities. Commentationes Math. Univ. Carolinae 35 (1994), 219–222. MR 1286567
[4] M. Hall, Jr.: Automorphisms of Steiner triple systems. IBM J. of Research Development 4 (1960), 460–471. DOI 10.1147/rd.45.0460 | MR 0123961 | Zbl 0100.01803
[5] J. Ježek and T. Kepka: Atoms in the lattice of varieties of distributive groupoids. Colloquia Math. Soc. J. Bolyai 14. Lattice Theory, Szeged, 1974, pp. 185–194. MR 0485630
[6] J. Ježek, T. Kepka and P. Němec: Distributive groupoids. Rozpravy ČSAV, Řada mat. a přír. věd 91, Academia, Praha, 1981. MR 0672563
[7] T. Kepka: Math. Nachr. 87 (1979), Distributive division groupoids 103–107. MR 0536417 | Zbl 0444.20067
[8] T. Kepka: Notes on quasimodules. Commentationes Math. Univ. Carolinae 20 (1979), 229–247. MR 0539554 | Zbl 0413.20054
[9] T. Kepka and P. Němec: Czech. Math. J. 31 (1981), Commutative Moufang loops and distributive groupoids of small orders 633–669. MR 0631607
[10] J. P. Soublin: Étude algébrique de la notion de moyenne. J. Math. Pures et Appl. 50 (1971), 53–264. MR 0291342 | Zbl 0215.40401
Partner of
EuDML logo