Article
Keywords:
distributive; medial; groupoid
Summary:
After enumerating isomorphism types of at most five-element left distributive groupoids, we prove that a distributive groupoid with less than 81 elements is necessarily medial.
References:
[1] R. El. Bashir and A. Drápal:
Quasitrivial left distributive groupoids. Commentationes Math. Univ. Carolinae 35 (1994), 597–606.
MR 1321230
[3] A. Drápal, T. Kepka and M. Musílek:
Group conjugation has non-trivial LD-identities. Commentationes Math. Univ. Carolinae 35 (1994), 219–222.
MR 1286567
[5] J. Ježek and T. Kepka:
Atoms in the lattice of varieties of distributive groupoids. Colloquia Math. Soc. J. Bolyai 14. Lattice Theory, Szeged, 1974, pp. 185–194.
MR 0485630
[6] J. Ježek, T. Kepka and P. Němec:
Distributive groupoids. Rozpravy ČSAV, Řada mat. a přír. věd 91, Academia, Praha, 1981.
MR 0672563
[8] T. Kepka:
Notes on quasimodules. Commentationes Math. Univ. Carolinae 20 (1979), 229–247.
MR 0539554 |
Zbl 0413.20054
[9] T. Kepka and P. Němec: Czech. Math. J. 31 (1981), Commutative Moufang loops and distributive groupoids of small orders 633–669.
MR 0631607
[10] J. P. Soublin:
Étude algébrique de la notion de moyenne. J. Math. Pures et Appl. 50 (1971), 53–264.
MR 0291342 |
Zbl 0215.40401