[2] Contessa, M. and F. Zanolin:
On some remarks about a not completable convergence ring. General Topology and its Relations to Modern Analysis and Algebra V. Proc. Fifth Prague Topological Sympos., Prague 1981), Heldermann Verlag, Berlin, 1982, pp. 107–114.
MR 0698397
[3] Dikranjan, D., Frič, R. and F. Zanolin:
On convergence groups with dense coarse subgroups. Czechoslovak Math. J. 37 (1987), 471–479.
MR 0904771
[4] Frič, R.:
Products of coarse convergence groups. Czechoslovak Math. J. 38 (1988), 285–290.
MR 0946298
[5] Frič, R.:
Rationals with exotic convergences. Math. Slovaca 39 (1989), 141–147.
MR 1018255
[6] Frič, R.:
Rationals with exotic convergences II. Math. Slovaca 40 (1990), 389–400.
MR 1120969
[7] Frič, R.:
On ring convergences. Riv. Mat. Pura Appl. 11 (1992), 125–138.
MR 1183444
[8] Frič, R. and V. Koutník:
Completions for subcategories of convergence rings. Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatories, World Scientific Publishing Co., Singapore, 1989, pp. 195–207.
MR 1047901
[9] Frič, R. and F. Zanolin:
Coarse convergence groups. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně 1984), Akademie-Verlag Berlin, 1985, pp. 107–114.
MR 0835476
[10] Frič, R. and F. Zanolin:
Sequential convergence in free groups. Rend. Istit. Mat. Univ. Trieste 18 (1986), 200–218.
MR 0928331
[11] Frič, R. and F. Zanolin:
Coarse sequential convergence in groups, etc. Czechoslovak Math. J. 40 (1990), 459–467.
MR 1065025
[12] Frič, R. and F. Zanolin:
Strict completions of $L_0^*$-groups. Czechoslovak Math. J. 42 (1992), 589–598.
MR 1182190
[13] Frič, R. and F. Zanolin: Minimal pseudotopological groups. (Presented at Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, Praha 1988, unpublished.). (19$\infty $).
[14] Jakubík, J.:
On convergence in linear spaces. Mat.-Fyz. Časopis Slovensk. Akad. Vied 6 (1956), 57–67. (Slovak. Russian summary)
MR 0084718
[15] Novák, J.:
On completion of convergence commutative groups. General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340.
MR 0365451
[16] Simon, P. and F. Zanolin:
A coarse convergence group need not be precompact. Czechoslovak Math. J. 37 (1987), 480–486.
MR 0904772