[1] J. Azéma, M. Kaplan-Duflo, D. Revuz:
Récurrence fine des processus de Markov. Ann. Inst. H. Poincaré Probab. Statist. 2 (1966), 185–220.
MR 0199889
[2] J. Azema, M. Kaplan-Duflo, D. Revuz:
Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157–181.
DOI 10.1007/BF00531519 |
MR 0222955
[3] J. Azéma, M. Duflo, D. Revuz:
Mesure invariante des processus de Markov recurrents. Séminaire de Probabilités III, Lecture Notes in Math. 88, Springer-Verlag, Berlin, 1969, pp. 24–33.
MR 0260014
[5] A. Chojnowska-Michalik, B. Gołdys:
Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331–356.
DOI 10.1007/BF01192465 |
MR 1339737
[7] G. Da Prato, J. Zabczyk:
Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge, 1992.
MR 1207136
[8] C. Dellacherie, P.–A. Meyer:
Probabilities and potential, Part A. North-Holland, Amsterdam, 1978.
MR 0521810
[9] M. Duflo, D. Revuz:
Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents. Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244.
MR 0273680
[10] E. B. Dynkin: Osnovaniya teorii markovskikh processov. GIFML, Moskva, 1959.
[11] E. B. Dynkin: Markovskie processy. GIFML, Moskva, 1963.
[12] F. Flandoli, B. Maslowski:
Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141.
DOI 10.1007/BF02104513 |
MR 1346374
[15] R. J. Gardner, W. F. Pfeffer:
Borel measures. Handbook of set-theoretic topology, North-Holland, Amsterdam 1984, pp. 961–1043.
MR 0776641
[17] R. K. Getoor:
Transience and recurrence of Markov processes. Séminaire de Probabilités XIV – 1978/79, Lecture Notes in Math. 784, Springer-Verlag, Berlin, 1980, pp. 397–409.
MR 0580144 |
Zbl 0431.60067
[19] B. Jamison, S. Orey:
Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41–48.
DOI 10.1007/BF00533943 |
MR 0215370
[20] R. Z. Hasminskiĭ: Èrgodiqeskie svoĭstva vozvratnyh diffuzionnyh processov i stabilizaciya rexeniĭ zadaqi Koxi dlya paraboliqeskih uravneniĭ. Teor. Veroyatnost. i Primenen. 5 (1960), 196–214.
[21] R. Z. Hasminskiĭ:
Ustoĭqivost sistem differencialnyh uravneniĭ pri sluqaĭnyh vozmuweniyah ih parametrov. Nauka, Moskva, 1969.
MR 0259283
[23] G. Maruyama:
On the strong Markov property. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 17–29.
MR 0107306 |
Zbl 0093.14901
[24] G. Maruyama, H. Tanaka:
Some properties of one-dimensional diffusion processes. Mem. Fac. Sci. Kyusyu Univ. Ser. A 11 (1957), 117–141.
MR 0097128
[25] G. Maruyama, H. Tanaka:
Ergodic property of $N$-dimensional recurrent Markov processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172.
MR 0112175
[28] B. Maslowski, J. Seidler:
Ergodic properties of recurrent solutions of stochastic evolution equations. Osaka J. Math. 31 (1994), 965–1003.
MR 1315015
[29] S. P. Meyn, R. L. Tweedie:
Generalized resolvents and Harris recurrence of Markov processes. Doeblin and modern probability, Contemporary Mathematics Vol. 149, AMS, Providence, 1993, pp. 227–250.
MR 1229967
[30] S. P. Meyn, R. L. Tweedie:
Stability of Markovian processes IIContinuous time processes and sampled chains. Adv. in Appl. Probab. 25 (1993), 487–517.
DOI 10.2307/1427521 |
MR 1234294
[32] S. Peszat, J. Seidler:
Maximal inequalities and space-time regularity of stochastic convolutions. Math. Bohem (to appear).
MR 1618707
[35] J. Seidler:
Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106.
MR 1213834 |
Zbl 0785.35115
[37] A. V. Skorohod: Asimptotiqeskie metody teorii stohastiqeskih differentsialnyh uravneniĭ. Naukova Dumka, Kiev, 1987.
[38] Ł. Stettner: On the existence and uniqueness of invariant measure for continuous time Markov processes. Lefschetz Center for Dynamical Systems Preprint # 86–18, April 1986.
[39] Ł. Stettner:
Remarks on ergodic conditions for Markov processes on Polish spaces. Bull. Polish Acad. Sci. Math. 42 (1994), 103–114.
MR 1810695 |
Zbl 0815.60072
[41] D. W. Stroock, S. R. S. Varadhan:
On the support of diffusion processes with applications to the strong maximum principle. Proceedings Sixth Berkeley Symposium Math. Statist. Probab., Vol. III., Univ. of California Press, Berkeley-Los Angeles, 1972, pp. 333–359.
MR 0400425
[42] J. Zabczyk:
Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces. Mathematical control theory, Banach Center Publications Vol. 14, PWN, Warsaw, 1985, pp. 591–609.
MR 0851253 |
Zbl 0573.93076
[43] J. Zabczyk:
Symmetric solutions of semilinear stochastic equations. Stochastic partial differential equations and applications II (Trento, 1988), Lecture Notes in Math. 1390, Springer-Verlag, Berlin, 1989, pp. 237–256.
MR 1019609 |
Zbl 0701.60060