[2] M. E. Ballvé:
$L^{\alpha }$ spaces for operator valued measures. Ann. Sc. Math. Québec 14 (1990), 9–15.
MR 1070603
[5] R. Bravo, P. Jiménez Guerra:
Linear operators and vector integrals. Math. Japonica 36 (1991), 255–262.
MR 1095738
[6] J. Diestel and J. J. Uhl, Jr.:
Vector Measures. Providence, Rhode Island, 1977.
MR 0453964
[7] I. Dobrakov:
On integration in Banach spaces, I. Czechoslovak Math. J. 20 (1970), 511–536.
MR 0365138 |
Zbl 0215.20103
[8] I. Dobrakov:
On integration in Banach spaces, II. Czechoslovak Math. J. 20 (1970), 680–695.
MR 0365139 |
Zbl 0224.46050
[9] I. Dobrakov:
On representation of linear operators on $C_0(T,\mathbb{X})$. Czechoslovak Math. J. 21 (1971), 13–30.
MR 0276804
[10] I. Dobrakov:
On integration in Banach spaces, III. Czechoslovak Math. J. 29 ((1979), 478–499.
MR 0536071
[11] I. Dobrakov:
On integration in Banach spaces, IV. Czechoslovak Math. J. 30 (1980), 259–279.
MR 0566051 |
Zbl 0452.28006
[12] I. Dobrakov:
On integration in Banach spaces, V. Czechoslovak Math. J. 30 (1980), 610–622.
MR 0592324 |
Zbl 0506.28004
[13] I. Dobrakov:
On integration in Banach spaces, VI. Czechoslovak Math. J. 35 (1985), 173–187.
MR 0787123 |
Zbl 0628.28007
[14] I. Dobrakov:
On integration in Banach spaces, VII. Czechoslovak Math. J. 38 (1988), 434–449.
MR 0950297 |
Zbl 0674.28003
[15] C. Debieve:
Integration of vector valued functions with respect to vector valued measures. Rev. Roumaine Math. Pures Appl. 26 (1981), 943–957.
MR 0627463 |
Zbl 0463.46038
[17] N. Dunford and J. T. Schwartz:
Linear Operators. Part I: General Theory. Interscience Publishers, New York, 1958.
MR 1009162
[18] P. R. Halmos:
Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1950.
Zbl 0040.16802
[19] J. Haluška:
On the continuity of the semivariation in locally convex spaces. Math. Slovaca 43 (1993), 185–192.
MR 1274601
[20] J. Haluška:
On lattices of set functions in complete bornological locally convex spaces. Simon Stevin 67 (1993), 27–48.
MR 1249046
[21] J. Haluška:
On a lattice structure of operator spaces in complete bornological locally convex spaces. Tatra Mt. Math. Publ. 2 (1993), 143–147.
MR 1251048
[22] J. Haluška:
On convergences of functions in complete bornological locally convex spaces. Rev. Roumaine Math. Pures Appl. 38 (1993), 327–337.
MR 1258045
[23] H. Hogbe-Nlend:
Bornologies and Functional Analysis. North-Holland, Amsterdam-New York-Oxford, 1977.
MR 0500064 |
Zbl 0359.46004
[25] H. B. Maynard:
A Radon-Nikodým theorem for operator valued measures. Trans. Amer. Math. Soc. 173 (1972), 449–463.
MR 0310187 |
Zbl 0263.28008
[26] J. V. Radyno:
Linear Equations and Bornology. Izd. Beloruskogo gosudarstvennogo universiteta, Minsk, 1982. (in Russian)
MR 0685429 |
Zbl 0534.46004
[28] S. K. Roy and N. D. Charkaborty:
Integration of vector valued functions with respect to an operator valued measure. Czechoslovak Math. J. 36 (1986), 198–209.
MR 0831308
[29] C. Schwartz:
Integration for the Dobrakov integral. Czechoslovak Math. J. 30 (1980), 640–646.
MR 0592327
[30] C. Schwartz:
Weak Fubini theorem for the Dobrakov integral. Czechoslovak Math. J. 30 (1980), 647–654.
MR 0592328