Previous |  Up |  Next

Article

References:
[1] Fedeli A.: On the $k$-Baire property. Comment. Math. Univ. Carolinae 34,3 (1993), 525–527. MR 1243083 | Zbl 0784.54031
[2] Fletcher P., Lindgren W.F.: A note on spaces of second category. Arch. der Math. 24 (1973), 186–187. DOI 10.1007/BF01228197 | MR 0315663
[3] Fogelgren J.R., McCoy R.A.: Some topological properties defined by homeomorphism groups. Arch. der Math. 22 (1971), 528–533. DOI 10.1007/BF01222613 | MR 0300259
[4] Frolík Z.: Generalizations of compact and Lindelöf spaces. Czechoslovak Math. J. 9 (1959), 172–217.
[5] Hager A.W.: Projections of zero-sets (and fine uniformity on a product). Trans. Amer. Math. Soc. 140 (1969), 87–94. DOI 10.1090/S0002-9947-1969-0242114-2 | MR 0242114
[6] McCoy R.A.: A filter characterization of regular Baire spaces. Proc. Amer. Math. Soc. 40 (1973), 268–270. DOI 10.1090/S0002-9939-1973-0339096-8 | MR 0339096 | Zbl 0267.54026
[7] McCoy R.A., Smith J.C.: The almost Lindelöf property for Baire spaces. Topology Proceedings 9 (1984), 99–104. MR 0781554
[8] Oxtoby J.C.: Spaces that admit a category measure. J. Reine Angew. Math. 205 (1961), 156–170. MR 0140637 | Zbl 0134.04302
[9] Scott B.: Pseudocompact, metacompact spaces are compact. Topology Proceedings 4 (1979), 577–586. MR 0598295
[10] Tall F.D.: The countable chain condition versus separability—applications of Martin’s axiom. Gen. Top. and Appl. 4 (1974), 315–339. MR 0423284 | Zbl 0293.54003
[11] Watson W.S.: Pseudocompact, metacompact spaces are compact. Proc. Amer. Math. Soc. 81 (1981), 151–152. MR 0589159 | Zbl 0468.54014
[12] Watson W.S.: A pseudocompact meta-Lindelöf space which is not compact. Top. Appl. 20 (1985), 237–243. MR 0804036 | Zbl 0589.54030
Partner of
EuDML logo