[1] L.J. Bunce, J.D.M. Wright:
The Mackey-Gleason problem for vector measures on projections in von Neumann algebras. J. London Math. Soc. 49 (1994), 133–149.
DOI 10.1112/jlms/49.1.133 |
MR 1253018
[2] J. Diestel, J.J. Uhl:
Vector measure. 1977, Math. Surveys n. 15.
MR 0453964
[3] N. Dunford, J.T. Schwartz:
Linear Operators, Part I. Wiley-Interscience, New York, 1958.
MR 1009162
[4] A. Dvurečenskij:
Gleason Theorem and its Application. Kluwer Academic Publishers, Dordrecht (Boston), London, 1993.
MR 1256736
[5] A. Dvurečenskij, S. Pulmannová:
Random measures on a logic. Demonstratio Mathematica 14 (1981), 305–320.
MR 0632289
[7] J. Hamhalter:
Orthogonal vector measures on projection lattices in a Hilbert space. Comment. Math. Univ. Carolinae 31 (1990), 655–660.
MR 1091363 |
Zbl 0743.46067
[8] J. Hamhalter:
States on $W^*$-algebras and orthogonal vector measures. Proc. Amer. Math. Soc. 110 (1990), 803-806.
MR 1036987 |
Zbl 0743.46063
[11] J. Hamhalter, P. Pták:
Hilbert space-valued measures on Boolean algebras (extensions). Acta Math. Univ. Comen. LX, 2 (1991), 1-6.
MR 1155246
[12] J. Hamhalter, P. Pták:
Hilbert space-valued states on quantum logics. Appl. Math. 37 (1992), 51–61.
MR 1152157
[15] R. V. Kadison, J. R. Ringrose:
Fundamentals of the theory of operators algebras Vol. I. Academic Press, Inc., 1986.
MR 0859186
[16] Z. Lipecki:
Extensions of additive set functions with values in a topological group. Bull. Acad. Pol. Sc. XXII 1 (1974), 19–27.
MR 0349947 |
Zbl 0275.28013
[17] P. Pták:
On extensions of states on logics. Bull. Polish Acad. Sciences Mathematics 9–10 (1985), 493–497.
MR 0826375
[18] P. Pták, S. Pulmannová:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht (Boston), London, 1991.
MR 1176314
[20] H. Weber: FN-topologies and measures. (1984), Notes on Lessons at University of Naples.