Previous |  Up |  Next

Article

References:
[1] T. E. Cecil and P. J. Ryan: Tight and taut immersions of manifolds. Pitman Adv. Publ. Program, 1985. MR 0781126
[2] J. Eells and N. H. Kuiper: Manifolds which are like projective planes. Publ. Math. I. H. E. S. 14 (1962), 128–222. DOI 10.1007/BF02684323 | MR 0145544
[3] M. H. Freedman: The topology of 4-dimensional manifolds. J. Diff. Geom. 17 (1982), 357–453. DOI 10.4310/jdg/1214437136 | MR 0679066
[4] M. W. Hirsch: Differential topology. Springer, 1976. MR 0448362 | Zbl 0356.57001
[5] N. H. Kuiper: Minimal total absolute curvature for immersions. Invent. Math. 10 (1970), 209–238. DOI 10.1007/BF01403250 | MR 0267597 | Zbl 0195.51102
[6] N. H. Kuiper: Tight embeddings and maps, submanifolds of geometrical class three in $E^N$. The Chern Symposium, Springer (1979), 97–145. MR 0609559
[7] J. Milnor: Morse theory. Princeton Univ. Press, 1963. MR 0163331 | Zbl 0108.10401
[8] J. D. Moore: Codimension two submanifolds of positive curvature. Proc. Amer. Math. Soc. 70 (1978), 72–74. DOI 10.1090/S0002-9939-1978-0487560-8 | MR 0487560 | Zbl 0395.53024
[9] M. Morse: Homology relations on regular orientable manifolds. Proc. Natl. Acad. Sc. 38 (1952), 247–258. DOI 10.1073/pnas.38.3.247 | MR 0048031 | Zbl 0049.12504
[10] M. Morse: The existence of polar nondegenerate functions. Ann. of Math. 71 (1960), 352–383. DOI 10.2307/1970086 | MR 0113232
[11] M. Morse: The elimination of critical points of a non-degenerate funnction. J. Analyse Math. 13 (1964), 257–316. DOI 10.1007/BF02786621 | MR 0184256
[12] M. Morse and S. S. Cairns: Critical point theory in global analysis and differential topology. Acad. Press, New York, 1969. MR 0245046
[13] R. S. Palais and C. L. Terng: Critical point theory and submanifold geometry. Springer, 1988. MR 0972503
[14] E. H. Spanier: Algebraic topology. McGraw-Hill, New York, 1966. MR 0210112 | Zbl 0145.43303
[15] G. W. Whitehead: Elements of homotopy theory. Springer, 1978. MR 0516508 | Zbl 0406.55001
[16] T. J. Willmore: Total curvature in Riemannian geometry. Ellis Horwood Ltd., West Sussex, England, 1982. MR 0686105 | Zbl 0501.53038
Partner of
EuDML logo