Article
Keywords:
invariant tensor; general linear group; graph
Summary:
We describe a correspondence between $\mbox {GL}_n$-invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.
References:
[1] Fuks, D. B.:
Cohomology of infinite dimensional Lie algebras. (Kogomologii beskonechnomernykh algebr Li). Kogomologii beskonechnomernykh algebr Li), Nauka, Moskva, 1984.
MR 0772201 |
Zbl 0592.17011
[2] Kauffman, L. H.:
Knots and Physics. Series on Knots and Everything , Vol. 1, World Scientific, 1991.
MR 1141156 |
Zbl 0733.57004
[3] Kolář, I, Michor, P. W., Slovák, J.:
Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993.
MR 1202431
[4] Kontsevich, M.:
Formal (non)commutative symplectic geometry. The Gel'fand mathematics seminars 1990–1992, Birkhäuser, 1993.
MR 1247289 |
Zbl 0821.58018
[5] Markl, M.:
Natural differential operators and graph complexes. Preprint math.DG/0612183, December 2006. To appear in Differential Geometry and its Applications.
MR 2503978 |
Zbl 1165.51005
[6] Markl, M., Merkulov, S. A., Shadrin, S.:
Wheeled PROPs, graph complexes and the master equation. Preprint math.AG/0610683, October 2006. To appear in Journal of Pure and Applied Algebra.
MR 2483835
[7] Weyl, H.:
The classical groups. Their invariants and representations. Fifteenth printing. Princeton University Press, 1997.
MR 1488158