[1] Bailey, T. N., Eastwood, M. G., Gover, A. Rod:
Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (4) (1994), 1191–1217.
DOI 10.1216/rmjm/1181072333 |
MR 1322223
[3] Calderbank, D. M. J., Diemer, T.:
Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103.
MR 1856258 |
Zbl 0985.58002
[4] Čap, A.:
Infinitesimal automorphisms and deformations of parabolic geometries. J. Europ. Math. Soc., to appear.
MR 2390330
[5] Čap, A.: Overdetermined systems, conformal geometry, and the BGG complex. Symmetries and Overdetermined Systems of Partial Differential Equations (Eastwood, M. G., Millor, W., eds.), vol. 144, The IMA Volumes in Mathematics and its Applications, Springer, 2008, pp. 1–25.
[6] Čap, A., Gover, A. R.:
Tractor bundles for irreducible parabolic geometries. Global analysis and harmonic analysis (Marseille-Luminy, 1999), vol. 4 of Sémin. Congr., Soc. Math. France, Paris, 2000, pp. 129–154.
MR 1822358
[12] Gover, A. R., Šilhan, J.: The conformal Killing equation on forms – prolongations and applications. Diff. Geom. Appl., to appear.
[13] Kashiwada, T.:
On conformal Killing tensor. Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74.
MR 0243458 |
Zbl 0179.26902
[15] Leitner, F.:
Conformal Killing forms with normalisation condition. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 279–292.
MR 2152367 |
Zbl 1101.53040
[16] Penrose, R., Rindler, W.:
Spinors and space-time. Two-spinor calculus and relativistic fields, vol. 1, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987.
MR 0917488 |
Zbl 0663.53013
[18] Šilhan, J.: Invariant operators in conformal geometry. Ph.D. thesis, University of Auckland, 2006.