Article
Keywords:
pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group
Summary:
Connected weakly irreducible not irreducible subgroups of $\mbox {Sp}(1,n+1)\subset \mbox {SO}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4.
References:
[1] Alekseevsky, D. V.:
Homogeneous Riemannian manifolds of negative curvature. Mat. Sb. (N.S.) 96 (138) (1975), 93–117.
MR 0362145
[3] Berard Bergery, L., Ikemakhen, A.:
On the holonomy of Lorentzian manifolds. Proc. Sympos. Pure Math. 54 (1993), 27–40.
MR 1216527 |
Zbl 0807.53014
[4] Berger, M.:
Sur les groupers d’holonomie des variétés àconnexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330.
MR 0079806
[7] Galaev, A. S.: Classification of connected holonomy groups for pseudo-Kählerian manifolds of index 2. arXiv:math.DG/0405098.
[8] Galaev, A. S.:
Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidian spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 87–97.
MR 2287128
[11] Leistner, T.:
On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (3) (2007), 423–484.
MR 2331527 |
Zbl 1129.53029