Previous |  Up |  Next

Article

Keywords:
manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra
Summary:
We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).
References:
[1] Anastasiei, M.: Metrizable linear connections in vector bundles. Publ. Math. Debrecen 62 (3-4) (2003), 277–287. MR 2008096
[2] Cheng, K. S., Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.
[3] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[4] Gołab, S.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 9 (1959), 132–137.
[5] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 14 (1963), 132–137. MR 0161263 | Zbl 0122.40501
[6] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil. Tensor, N.S. 17 (1966), 28–43. MR 0195021
[7] Jakubowicz, A.: Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume. Tensor, N.S. 18 (1967), 259–270. MR 0215253
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[9] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. DOI 10.1007/BF01110924 | MR 0295250 | Zbl 0234.53024
[10] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note Mat. 8 (1) (1988), 1–11. MR 1050506 | Zbl 0699.53038
[11] Levine, J.: Invariant characterization of two-dimensional affine and metric spaces. Duke Math. J. 14 (1948), 69–77. MR 0025236
[12] Schmidt, B. G.: Conditions on a connection to be a metric connection. Comm. Math. Phys. 29 (1973), 55–59. DOI 10.1007/BF01661152 | MR 0322726
[13] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19 (6) (1991), 529–532.
[14] Vanžurová, A.: Linear connections on two-manifolds and SODE’s. Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332.
[15] Vilimová, Z.: The problem of metrizability of linear connections. Master's thesis, Opava, 2004, supervisor: O. Krupková.
Partner of
EuDML logo