Previous |  Up |  Next

Article

Keywords:
Boolean algebras; structure theory; directed set; direct product decomposition; atomicity
Summary:
In the present paper we deal with the relations between direct product decompositions of a directed set $L$ and direct product decompositions of intervals of $L$.
References:
[1] J. Hashimoto: On direct product decompositions of partially ordered sets. Ann. of Math. 54 (1951), 315-318. DOI 10.2307/1969532 | MR 0043067
[2] J. Jakubík: Weak product decompositions of discrete lattices. Czechoslovak Math. J. 21 (1971), 399-412. MR 0286723
[3] J. Jakubík: Weak product decompositions of partially ordered sets. Colloq. Math. 25 (1972), 177-190. DOI 10.4064/cm-25-2-177-190 | MR 0329977
[4] J. Jakubík: Directly indecomposable direct factors of a lattice. Math. Bohem. 121 (1996), 281-292. MR 1419882
[5] J. Jakubík M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-379. MR 1251882
[6] L. Libkin: Direct decompositions of atomistic algebraic lattices. Algebra Univ. 33 (1995), 127-135. DOI 10.1007/BF01190769 | MR 1303635 | Zbl 0818.06004
Partner of
EuDML logo