Previous |  Up |  Next

Article

Keywords:
orthomodular poset; concrete quantum logic; Boolean algebra; covering; Jauch-Piron state; orthocompleteness
Summary:
We present three results stating when a concrete (=set-representable) quantum logic with covering properties (generalization of compatibility) has to be a Boolean algebra. These results complete and generalize some previous results [3, 5] and answer partiallz a question posed in [2].
References:
[1] S. P. Gudder: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979. MR 0543489 | Zbl 0439.46047
[2] V. Müller: Jauch-Piron states on concrete quantum logics. Int. J. Theor. Phys. 32 (1993), 433-442. DOI 10.1007/BF00673353 | MR 1213098
[3] V. Müller P. Pták J. Tkаdlec: Concrete quantum logics with covering properties. Int. J. Theor. Phys. 31 (1992), 843-854. DOI 10.1007/BF00678549 | MR 1162627
[4] M. Nаvаrа P. Pták: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111. DOI 10.1016/0022-4049(89)90108-4 | MR 1014608
[5] P. Pták: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. To appear. MR 1452822
[6] P. Pták S. Pulmаnnová: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991. MR 1176314
[7] J. Tkаdlec: Boolean orthoposets-concreteness and orthocompleteness. Math. Bohem. 119 (1994), 123-128. MR 1293244
[8] J. Tkаdlec: Conditions that force an orthomodular poset to be a Boolean algebra. Tatra Mt. Math. Publ. 10 (1997), 55-62. MR 1469281
Partner of
EuDML logo