Article
Keywords:
nonlinear differential equations; quasi-derivatives; monotone solutions; Kneser solutions
Summary:
The paper deals with existence of Kneser solutions of $n$-th order nonlinear differential equations with quasi-derivatives.
References:
[4] Palumbíny O.:
On existence of monotone solutions of a certain class of n-th order nonlinear differential equations. To appear.
MR 1635224
[5] Philos, Ch. G.:
Oscillation and asymptotic behaviour of third order linear differential equations. Bull. Inst. Math. Acad. Sinica 11(2) (1983), 141-160.
MR 0723022
[6] Regenda J.:
Osciliatory and nonoscillatory properties of solutions of the differential equation $y^{(4)} + P(t)y'' + Q(t)y = 0$. Math. Slovaca 28 (1978), 329-342.
MR 0534812
[7] Rovder J.:
Comparison theorems for third-order linear differential equations. Bull. Inst. Math. Acad. Sinica 19 (1991), 43-52.
MR 1144391 |
Zbl 0726.34029
[8] Rovder J.: Kneser problem for third order nonlinear differential equation. Zborník vedeckých prác MtF STU Trnava (1993).
[10] Škerlík A.:
Criteria of property A for third order superlinear differential equations. Math. Slovaca 43 (1993), 171-183.
MR 1274600
[11] Švec M.:
On various properties of the solutions of third and fourth order linear differential equations. Proceedings of the conference held in Prague in September 1962. pp. 187-198.
MR 0174825
[12] Švec M.:
Über einige neue Eigenschaften der oszillatorischen Lösungen der linearen homogenen Differentialgleichung vierter Ordnung. Czechoslovak Math. J. 4 (79) (1954), 75-94.
MR 0065745
[13] Tóthová M., Palumbíny O.:
On monotone solutions of the fourth order ordinary differential equations. Czechoslovak Math. J. 45 (120) (1995), 737-746.
MR 1354930 |
Zbl 0849.34023