[2] P. Drábek M. Kučera M. Míková:
Bifurcation points of reaction-diffusion systems with unilateral conditions. Czechoslovak Math. J. 35 (1985), 639-660.
MR 0809047
[3] P. Drábek M. Kučera:
Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions. Czechoslovak Math. J. 36 (1986), 116-130.
MR 0822872
[5] G. Duvaut J. L. Lions:
Les Inéquations en Mechanique et en Physique. Dunod, Paris, 1972.
MR 0464857
[6] J. Eisner M. Kučera:
Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Appl. of Math. 42 (1997), 421-449.
DOI 10.1023/A:1022203129542 |
MR 1475051
[7] J. Eisner:
Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions. Preprint Math. Inst. Acad. Sci. of the Czech Republic, No. 118, Praha, 1997. To appear in Nonlinear Anal.
MR 1845578
[8] J. Eisner M. Kučera:
Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. Fields Inst. Commun. 25 (2000), 239-256.
MR 1759546
[9] J. Eisner:
Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions. Part II, Examples. To appear in Math. Bohem.
MR 1826476
[10] S. Fučík A. Kufner:
Nonlinear Differential Equations. Elsevier, Amsterdam, 1980.
MR 0558764
[11] A. Gierer H. Meinhardt:
A theory of biological pattern formation. Kybernetik 12 (1972), 30-39.
DOI 10.1007/BF00289234
[12] M. Kučera J. Neustupa:
Destabilizing effect of unilateral conditions in reaction-diffusion systems. Comment. Math. Univ. Carol. 27 (1986), 171-187.
MR 0843429
[13] M. Kučera:
Stability and bifurcation problems for reaction-diffusion system with unilateral conditions. Equadiff 6 (J. Vosmanský, M. Zlámal, eds.). Brno, Universita J. E. Purkyně, 1986, pp. 227-234.
DOI 10.1007/BFb0076074 |
MR 0877129
[14] M. Kučera:
A global continuation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J. 38 (1988), 120-137.
MR 0925946
[15] M. Kučera M. Bosák: Bifurcation for quasi-variational inequalities of reaction diffusion type. Proceedings of EQUAM 92, International Conference on Differential Equations and Mathematical Modelling, Varenna 1992. SAACM 3, 1993, pp. 121-127.
[16] M. Kučera:
Bifurcation of solutions to reaction-diffusion system with unilateral conditions. Navier-Stokes Equations and Related Topics (A. Sequeira, ed.). Plenum Press, New York, 1995, pp. 307-322.
MR 1373224
[18] M. Kučera:
Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities. Czechoslovak Math. J. 47 (1997), 469-486.
DOI 10.1023/A:1022411501260 |
MR 1461426
[19] M. Kučera:
Bifurcation of solutions to reaction-diffusion system with conditions described by inequalities and inclusions. Nonlinear Anal. Theory Methods Appl. 30 (1997), 3683-3694.
MR 1602910
[21] H. Meinhardt:
The algorithmic beauty of sea shells. Springer-Verlag, Berlin, 1996.
MR 1325695
[22] J. D. Murray:
Mathematical Biology. Springer-Verlag, Berlin, 1993.
MR 1239892
[23] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Praha, Academia, 1967.
MR 0227584
[26] P. Quittner:
Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1-13.
MR 0916198 |
Zbl 0617.35053
[27] A. M. Turing: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (1952), 37-72.