Previous |  Up |  Next

Article

Keywords:
weak subsolution; generalized maximum principle; comparison theorem; degenerate equation
Summary:
We prove a generalized maximum principle for subsolutions of boundary value problems, with mixed type unilateral conditions, associated to a degenerate parabolic second-order operator in divergence form.
References:
[1] Adams R. A.: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[2] Baiocchi C.: Soluzioni deboli dei problemi ai limiti per le equazioni paraboliche del tipo del calore. Ist. Lombardo Accad. Sci. Lett. Rend. Sez. A 103 (1969), 704-726. MR 0262696
[3] Bonafede S.: On maximum principle for weak subsolutions of degenerate parabolic linear equations. Comment. Math. Univ. Carolin. 35 (1994), 417-430. MR 1307270 | Zbl 0808.35065
[4] Bonafede S.: A generalized maximum principle for weak subsolutions of degenerate parabolic equations. Rend. Circ. Mat. Palermo (2) 41 (1992), 81-95. MR 1175590
[5] Drábek P., Nicolosi F.: Existence of bounded solutions for some degenerated quasilinear elliptic equations. Ann. Mat. Pura Appl. (4) 165 (1993), 217-238. MR 1271420
[6] Eklund N. A.: Generalized super-solution of parabolic operators. Trans. Amer. Math. Soc. 220 (1976), 235-242. DOI 10.1090/S0002-9947-1976-0473522-6 | MR 0473522
[7] Guglielmino F., Nicolosi F.: W-solutions of boundary value problems for degenerate elliptic operators. Ricerche Mat. Suppl. 36 (1987), 59-72. MR 0956018
[8] Guglielmino F., Nicolosi F.: Existence theorems for boundary value problems associated with quasilinear elliptic equations. Ricerche Mat. 37 (1988), 157-176. MR 1021963
[9] Guglielmino F., Nicolosi F.: Existence results for boundary value problems for a class of quasilinear parabolic equations. Actual problems in analysis and mathematical physics, Proceeding of the international symposium in Taormina, Italy, 1992. Univ. di Roma, Roma, 1993, pp. 95-117.
[10] Ladyzhenskaja O. A., Solonnikov V. A., Ural'tseva N. N.: Linear and Quasi-Linear Equations of Parabolic Type. Translation of mathematical monographs, vol. 23, A. M. S. Providence, 1968.
[11] Murthy M. K. V., Stampacchia G.: Boundary value problems for some degenerate-elliptic operators. Ann. Mat. Pura Appl. (4) 80 (1968), 1-122. DOI 10.1007/BF02413623 | MR 0249828 | Zbl 0185.19201
[12] Nicolosi F.: Sottosoluzioni deboli delle equazioni paraboliche lineari del secondo ordine superiormente limitate. Matematiche 28 (1973), 361-378. MR 0364867
[13] Nicolosi F.: Soluzioni dei problemi al contorno per operatori parabolici che possono degenerare. Ann. Mat. Pura Appl., IV. Ser. 125 (1980), 135-155. MR 1553443
[14] Platone Garroni M. G.: A generalized maximum principle for boundary value problems for elliptic operators with discontinuous coefficients. Boll. U.M.I. (4) 9 (1974), 1-9. MR 0372415 | Zbl 0294.35025
[15] Protter M. H., Weinberger H. F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Sup. Pisa 17 (1963), 45-79. MR 0161019
[16] Stampacchia G.: Le probleme de Dirichiet pour les equations elliptiques du second ordre a coefficients discontinus. Annal. Inst. Fourier 15 (1965), 187-257. MR 0192177
[17] Troianello G. M.: On weak subsolutions for parabolic second-order operators. Comm. Partial Differential Equations 3, 933-948. DOI 10.1080/03605307808820081 | MR 0507123
Partner of
EuDML logo