Previous |  Up |  Next

Article

Keywords:
$n$-inner product space; $n$-normed space; $n$-norm of projection
Summary:
This paper is a continuation of investigations of $n$-inner product spaces given in \cite{five,six,seven} and an extension of results given in \cite{three} to arbitrary natural $n$. It concerns families of projections of a given linear space $L$ onto its $n$-dimensional subspaces and shows that between these families and $n$-inner products there exist interesting close relations.
References:
[1] C. Diminnie S. Gähler A. White: 2-inner product spaces. Demonstratio Math. 6 (1973), 525-536. MR 0365099
[2] S. Gähler: Lineare 2-normierte Räume. Math. Nachr. 28 (1965), 1-43. DOI 10.1002/mana.19640280102 | MR 0169021
[3] S. Gähler Z. Żekanowski: Tensors, 2-inner products and projections. Demonstratio Math. 19 (1986), 747-766. MR 0902931
[4] S. Gähler Z. Żekanowski: Remarks on tensors and families of projections. Math. Nachr. 143 (1989), 277-290. DOI 10.1002/mana.19891430121 | MR 1018248
[5] A. Misiak: n-inner product spaces. Math. Nachr. 140 (1989), 299-319. DOI 10.1002/mana.19891400121 | MR 1015402 | Zbl 0708.46025
[6] A. Misiak: Orthogonality and orthonormality in n-inner product spaces. Math. Nachr. 143 (1989), 249-261. DOI 10.1002/mana.19891430119 | MR 1018246 | Zbl 0708.46025
[7] A. Misiak: Simple n-inner product spaces. Prace Naukowe Politechniki Szczecińskiej 12 (1991), 63-74. Zbl 0754.15027
[8] Z. Żekanowski: On some generalized 2-inner products in the Riemannian manifolds. Demonstratio Math. 12 (1979), 833-836. MR 0560371
Partner of
EuDML logo