Previous |  Up |  Next

Article

Keywords:
nonlinear operator; Lipschitz continuity; pseudo-adjoint operator; resolvent set; spectrum; eigenvalue; generalized spectral radius
Summary:
We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties.
References:
[1] Appell J., De Pascale E., Vignoli A.: A comparison of different spectra for nonlinear Operators. Nonlin. Anal. To appear. Zbl 0956.47035
[2] Appell J., Dörfner M.: Some spectral theory for nonlinear Operators. Nonlin. Anal. 28 (12) (1997), 1955-1976. DOI 10.1016/S0362-546X(96)00040-5 | MR 1436365 | Zbl 0876.47042
[3] Cacuci D. G., Perez R. B., Protopopescu V.: Duals and propagators: A canonical formalism for nonlinear equations. J. Math. Phys. 29 (1988), 353-361. DOI 10.1063/1.528075 | MR 0927019 | Zbl 0695.35221
[4] Caselles V.: Duality and nonlinear equations governed by accretive Operators. Publ. Math. Fac. Sci. Besancon 12 (1990), 7-25. MR 1034994 | Zbl 0766.47029
[5] Edmunds D.E., Webb J. R. L.: Remarks on nonlinear spectral theory. Boll. Un. Mat. Ital. B 2 (1983), 377-390. MR 0698500
[6] Feng W.: A new spectral theory for nonlinear Operators and its applications. Abstr. Appl. Anal. 2 (1997), 163-183. DOI 10.1155/S1085337597000328 | MR 1604177 | Zbl 0952.47047
[7] Furi M., Martelli M., Vignoli A.: Contributions to the spectral theory for nonlinear Operators in Banach Spaces. Ann. Mat. Pura Appl. 118 (1978), 229-294. MR 0533609 | Zbl 0409.47043
[8] Kachurovskij R. I.: Regular points, spectrum and eigenfunctions of nonlinear operators. Dokl. Akad. Nauk 188 (1969), 274-277. (Russian, Engl, transl.: Soviet Math. Dokl. 10 (1969), 1101-1105.) MR 0251599 | Zbl 0197.40402
[9] Maddox I. J., Wickstead A. W.: The spectrum of uniformly Lipschitz mappings. Proc. Roy. Irish Acad. A 89 (1989), 101-114. MR 1021228 | Zbl 0661.47048
[10] Nashed M. Z.: Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis. Nonlinear Functional Analysis and Applications (L. B. Rail, ed.). Academic Press, New York, 1971. MR 0276840
[11] Neuberger J. W.: Existence of a spectrum for nonlinear transformations. Pacific J. Math. 31 (1969), 157-159. DOI 10.2140/pjm.1969.31.157 | MR 0259696 | Zbl 0182.47203
[12] Rhodius A.: Der numerische Wertebereich und die Lösbarkeit linearer und nichtlinearer Gleichungen. Math. Nachr. 79 (1977), 343-360. DOI 10.1002/mana.19770790137 | MR 0637086
[13] Shutjaev V. P.: On calculation of a functional in a nonlinear problem using an adjoint equation. Zh. Vychisl. Mat. Mat. Fiz, 31 (1991), 1278-1288. (Russian, Engl. transl.: J. Comput. Math. Math. Phys. 31 (1991), 8-16.) MR 1145198
[14] Trenogin V. A.: Operators which are adjoint to nonlinear operators in weakly metric spaces. Trudy Mezhd. Konf. 175-let. P. L. Chebysheva, Izdat. MGU 1 (1996), 335-337, (Russian.)
[15] Trenogin V. A.: Properties of resolvent sets and estimates for the resolvent of nonlinear operators. Dokl. Akad. Nauk 359 (1998), 24-26. (Russian.) MR 1668399
[16] Yamamuro S.: The adjoints of differentiable mappings. J. Austral. Math. Soc. 8 (1968), 397-409. DOI 10.1017/S1446788700006091 | MR 0233202 | Zbl 0184.17802
Partner of
EuDML logo