Article
Keywords:
closure system; distributive lattice; lattices of $\Sigma-closed subsets; modular lattice; algebraic structures; $\Sigma$-closed subset; convex subset
Summary:
Let $\Cal A =(A,F,R)$ be an algebraic structure of type $\tau$ and $\Sigma$ a set of open formulas of the first order language $L(\tau)$. The set $C_\Sigma(\Cal A)$ of all subsets of $A$ closed under $\Sigma$ forms the so called lattice of $\Sigma$-closed subsets of $\Cal A$. We prove various sufficient conditions under which the lattice $C_\Sigma(\Cal A)$ is modular or distributive.
References:
[1] Chajda I.:
A note on varieties with distributive subalgebra lattices. Acta Univ. Palack. Olomouc, Fac. Rer. Natur., Matematica 31 (1992), 25-28.
MR 1212602 |
Zbl 0777.08001
[2] Chajda I., Emanovský P.:
$\Sigma$-isomorphic algebraic structures. Mathem. Bohemica 120 (1995), 71-81.
MR 1336947 |
Zbl 0833.08001
[3] Emanovský P.:
Convex isomorphic ordered sets. Mathem. Bohemica 118 (1993), 29-35.
MR 1213830
[5] Jakubíková-Studenovská D.:
Convex subsets of partial monounary algebras. Czech. Math. J. 38 (1988), no. 113, 655-672.
MR 0962909
[6] Marmazajev V.I.:
The lattice of convex sublattices of a lattice. Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.)
MR 0957970