[2] C Ferrario A. Passerini:
Symmetries and constants of motion for constrained Lagrangian systems: a presymplectic version of the Noether theorem. J. Phys. A 23 (1990), 5061-5081.
DOI 10.1088/0305-4470/23/21/040 |
MR 1083892
[4] J. Hrivňák: Symmetries and first integrals of equations of motion in higher-order mechanics. Thesis, Dept. of Math., Silesian University, Opava, 1995, pp. 59. (In Czech.)
[5] D. Krupka: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65.
[6] D. Krupka:
A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections, II. Invariance. J. Math. Anal. Appl. 49 (1975), 180-206; 469-476.
DOI 10.1016/0022-247X(75)90169-9 |
MR 0362397
[7] D. Krupka:
Geometry of Lagrangean structures 2. Arch. Math. (Brno) 22 (1986), 211-228.
MR 0868536
[8] O. Krupková:
Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, II. Inverse problem. Arch. Math. (Brno) 22 (1986), 97-120; 23 (1987), 155-170.
MR 0868124
[9] O. Krupková: Variational analysis on fibered manifolds over one-dimensional bases. PhD Thesis, Dept. of Math., Silesian University, Opava, 1992, pp. 67.
[11] G. Marmo G. Mendella W. M. Tulczyjew:
Symmetries and constants of the motion for dynamics in implicit form. Ann. Inst. Henri Poincaré, Phys. Theor. 57(1992), 147-166.
MR 1184887
[12] E. Noether: Invariante Variationsprobleme. Nachr. Kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. (1918), 235-257.