[2] Ju. D. Burago V. G. Maz'ja: Some problems of potential theory and theory of functions for domains with nonregular boundaries. Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.)
[3] E. Dontová: Reflection and the Dirichlet and Neumann problems. Thesis, Prague, 1990. (In Czech.)
[4] E. Dontová:
Reflection and the Dirichlet problem on doubly connected regions. Časopis Pěst. Mat. 113 (1988), 122-147.
MR 0949040
[5] E. Dontová:
Reflection and the Neumann problem in doubly connected regions. Časopis Pěst. Mat. 113 (1988), 148-168.
MR 0949041
[8] C. Jacob:
Sur le problème de Dirichlet dans un domaine plan multiplement connexe et ses applications a l'Hydrodynamique. J. Math. Pures Appl. (9) 18 (1939), 363-383.
MR 0001692
[9] J. Král:
The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (1965), 454-473, 565-588.
MR 0190363
[11] J. Král:
Boundary regularity and normal derivatives of logarithmic potentials. Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), 241-258.
MR 0906210
[13] J. Král D. Medková:
Angular limits of the integrals of the Cauchy type. Preprint 47/1994, MU AV ČR.
MR 1479307
[14] J. Král D. Medková:
Angular limits of double layer potentials. Czechoslovak Math. J. 45 (1995), 267-292.
MR 1331464
[15] V. G. Maz'ja: Boundary Integral Equations. Analysis IV, Encyclopaedia of Mathematical Sciences Vol. 27, Springer-Verlag, 1991.
[16] N. I. Muschelišvili:
On the fundamental mixed boundary value problem of logarithmic potential for multiply connected domains. Soobščenija Akad. Nauk Gruzinskoj SSR 2 (1941), no. 4, 309-313. (In Russian.)
MR 0010234
[17] S. Saks:
Theory of the Integral. Dover Publications, New York. 1964.
MR 0167578
[21] J. M. Sloss J. C. Bruch:
Harmonic approximation with Dirichlet data on doubly connected regions. SIAM J. Numer. Anal. 14, (1974), 994-1005.
DOI 10.1137/0714067 |
MR 0478687
[22] J. Veselý:
On the mixed boundary problem of the theory of analytic functions. Časopis Pěst. Mat. 91 (1966), 320-336. (In Czech.)
MR 0206294
[23] W. L. Wendland:
Boundary element methods and their asymptotic convergence. Lecture Notes of the CISM, Summer-School on Theoretical acoustic and numerical techniques, Int. Centre Mech. Sci., Udine (P. Filippi, ed.). Springer-Verlag, Wien, 1983, pp. 137-216.
MR 0762829 |
Zbl 0618.65109