Previous |  Up |  Next

Article

Keywords:
uniformity; regularity; permutability; coherence; transferable congruences; Mal'cev condition
Summary:
An algebra $a$ is uniform if for each $\theta\in\Con a$, every two classes of $\theta$ have the same cardinality. It was shown by W. Taylor that coherent varieties need not be uniform (and vice versa). We show that every coherent variety having transferable congruences is uniform.
References:
[1] Chаjdа I.: Transferable principal congruences and regular algebras. Math. Slovaca З4 (1984), 97-102. MR 0735940
[2] Chаjdа I.: Coherence, regularity and permutability of congruences. Algebra Universalis 17 (1983), 170-173. DOI 10.1007/BF01194526 | MR 0726270
[3] Chаjdа I.: Examples of local uniformity of congruences. Acta Sci. Math. (Szeged) 52 (1988), 81-84. MR 0957790
[4] Chаjdа I: Weak coherence of congruences. Czechoslovak Math. J. 41 (1991), 149-154. MR 1087635
[5] Geiger D.: Coherent algebras. Notices Amer. Math. Soc. 21 (1974), 74T-A130.
[6] Krаuss P. H., Clаrk D. M.: Global subdirect products. Mem. Amer. Math. Soc. 210 (1979). MR 0512475
[7] McKenzie R.: Narrowness implies uniformity. Algebra Universalis 15 (1982), 67-85. DOI 10.1007/BF02483709 | MR 0663953 | Zbl 0505.08004
[8] Tаylor W.: Uniformity of congruences. Algebra Universalis 4 (1974), 342-360. DOI 10.1007/BF02485747 | MR 0376483
[9] Thurston H. A.: Derived operations and congruences. Proc. London Math. Soc. 8 (1958), 127-134. MR 0091924 | Zbl 0078.01901
[10] Werner H.: A Maľcev condition on admissible relations. Algebra Universalis 3 (1973), 263. DOI 10.1007/BF02945126 | MR 0330009
Partner of
EuDML logo