Previous |  Up |  Next

Article

Keywords:
continuous multifunction; selection; quasicontinuity
Summary:
The paper presents new quasicontinuous selection theorem for continuous multifunctions $F X \longrightarrow\Bbb R$ with closed values, $X$ being an arbitrary topological space. It is known that for $2^{\Bbb R}$ with the Vietoris topology there is no continuous selection. The result presented here enables us to show that there exists a quasicontinuous and upper$\langle$lower$\rangle$-semicontinuous selection for this space. Moreover, one can construct a selection whose set of points of discontinuity is nowhere dense.
References:
[1] R. Engelking R. V. Heath E. Michael: Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150-158. DOI 10.1007/BF01425452 | MR 0244959
[2] I. Kupka: Quasicontinuous selections for compact-valued multifunctions. Math. Slovaca 43 (1993), 69-75. MR 1216269 | Zbl 0784.54023
[3] I. Kupka: Continuous multifunction from [-1,0] to R having noncontinuous selection. Publ. Math. (Submitted).
[4] K. Kuratowski: Topologie I. PWN Warszawa, 1952.
[5] N. Levine: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41. DOI 10.1080/00029890.1963.11990039 | MR 0166752 | Zbl 0113.16304
[6] M. Matejdes: Sur les sélecteurs des multifonctions. Math. Slovaca 37 (1987), 111-124. MR 0899022 | Zbl 0629.54013
[7] M. Matejdes: On selections of multifunctions. Math. Bohem. 118 (1993), 255-260. MR 1239120 | Zbl 0785.54022
[8] M. Matejdes: Quasi-continuous and cliquish selections of multifunctions on product spaces. Real Anal. Exchange. To appear. MR 1205513 | Zbl 0782.54019
[9] E. Michael: Continuous selections I. Ann. of Math. 63 (1956), 361-382. DOI 10.2307/1969615 | MR 0077107 | Zbl 0071.15902
[10] E. Michael: Continuous selections II. Ann. of Math. 64 (1956), 562-580. DOI 10.2307/1969603 | MR 0080909 | Zbl 0073.17702
[11] S. B. Nadler: Hyperspaces of sets. Marcel Dekker, Inc., New York and Bassel, 1978. MR 0500811 | Zbl 0432.54007
[12] T. Neubrunn: Quasi-continuity. Real Anal. Exchange H (1988-89), 259-306. MR 0995972
[13] A. Neubrunnová: On certain generalizations of the notion of continuity. Mat. Časopis 23 (1973), 374-380. MR 0339051
Partner of
EuDML logo