Previous |  Up |  Next

Article

Keywords:
ternary; projective plane; incidence matrix; finite projective plane; ternary ring; system of orthogonal Latin squares; Hall plane of order 9; Hughes plane of order 9
Summary:
A combinatorial characterization of finite projective planes using strongly canonical forms of incidence matrices is presented. The corresponding constructions are applied to known projective planes of order 9. As a result a new description of the Hughes plane of order nine is obtained.
References:
[1] Hughes D.R., Piper F.C.: Projective Planes. New York-Heidelberg-Berlin, 1973. MR 0333959 | Zbl 0267.50018
[2] Pickert G.: Projektive Eben. Berlin-Göttingen-Heidelberg, 1955.
[3] Stevenson F. W.: Projective Planes. San Francisco, 1972. MR 0344995 | Zbl 0245.50022
[4] Paige L. J., Wexler, Ch.: A canonical form for incidence matrices of finite projective planes and their associated Latin squares. Portugaliae Mathematica 12 (1953), 105-112. MR 0060448 | Zbl 0053.10802
[5] Hall M.: Projective Planes. Trans. Amer. Math. Soc. 54 (1943), 229-277. DOI 10.1090/S0002-9947-1943-0008892-4 | MR 0008892 | Zbl 0060.32209
[6] Room T.G., Kirkpatrick P.B.: Miniquaternion Geometry. Cambridge, 1971. Zbl 0203.22801
[7] Dénes J., Keedwell A.D.: Latin squares and their applications. Budapest, 1974. MR 0351850
[8] Veblen O., Wedderburn J. H. M.: Non-Desargusian and non-Pascalian geometries. Trans. AMS 8 (1907), 379-388. DOI 10.1090/S0002-9947-1907-1500792-1 | MR 1500792
[9] Knoflíček F.: On one construction of all quasifields of order 9. Comm. Math. Univ. Carolinae 27 (1986), 683-694. MR 0874662
Partner of
EuDML logo