Previous |  Up |  Next

Article

Keywords:
sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order
Summary:
We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega_1$.
References:
[1] R. Engelking: General topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[2] T. H. Fay E. T. Ordman B. V. Smith-Thomas: The free topological group over rational. General Topology Appl. 10 (1979), 33-47. DOI 10.1016/0016-660X(79)90027-8 | MR 0519712
[3] R. Frič J. Gerlits: On the sequential order. Math. Slovaca 42 (1992), 505-512. MR 1195044
[4] R. Frič M. Hušek V. Koutník: Sequential groups, k-groups and other categories of continuous algebras. to appear. MR 1244367
[5] R. Frič F. Zanolin: Sequential convergence in free groups. Rend. Ist. Matem. Univ. Trieste 78 (1986), 200-218. MR 0928331
[6] R. Frič F. Zanolin: Fine convergence in free groups. Czechoslovak Math. J. 36 (1983), 134-139. MR 0822875
[7] A. Kaminski: On characterization of topological convergence. Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 50-70. MR 0639315
[8] B. Kneis: Completion functors for categories of convergence spaces. II. Embedding of separated acceptable spaces into their completion. Math. Nachr. 185 (1988), 181-211. DOI 10.1002/mana.19881350116 | MR 0944227 | Zbl 0676.54011
[9] V. Koutník: Completeness of sequential convergence groups. Studia Math. 77 (1984), 454-464. DOI 10.4064/sm-77-5-455-464 | MR 0751766
[10] V. Koutník: Closure and topological sequential convergence. Convergence structures 1984, (Proc. Conference on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 199-204. MR 0835486
[11] W. F. LaMartin: On the foundations of k-group theory. Diss. Math. 146(1911). MR 0480835
[12] W. F. LaMartin: Epics in the category of $T_2$ k-groups need not have dense range. Colloq. Math. 30 (1976), 37-41. MR 0427524 | Zbl 0353.22001
[13] M. McCord: Classifying spaces and infinite symmetric products. Trans. Amer. Math. Soc. 146 (1969), 273-298. DOI 10.1090/S0002-9947-1969-0251719-4 | MR 0251719 | Zbl 0193.23604
[14] P. Mikusinski: Problems posed at the Conference. Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 110-112. MR 0639325
[15] J. Novák: On convergence groups. Czechoslovak Math. J. 20(1970), 357-374. MR 0263973
[16] E. Nummela: Uniform free topological groups and Samuel compactification. Topology Appl. 13 (1982), 77-83. DOI 10.1016/0166-8641(82)90009-8 | MR 0637429
[17] P. J. Nyikos: Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Amer. Math. Soc. 88(1981), 793-801. MR 0630057 | Zbl 0474.22001
[18] E. T. Ordman: Free k-groups and free topological groups. General Topology Appl. 5 (1975), 205-219. DOI 10.1016/0016-660X(75)90021-5 | MR 0427525 | Zbl 0306.22003
[19] E. T. Ordman B. V. Smith-Thomas: Sequential conditions and free topological groups. Proc. Amer. Math. Soc. 19 (1980), 319-326. DOI 10.1090/S0002-9939-1980-0565363-2 | MR 0565363
[20] H.-F. Porst: Free algebras over cartesian closed topological categories. General Topology and its Relation to Modern Analysis and Algebra, VI, (Proc Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 437-450. MR 0952627
[21] O. Schreier: Abstrakte kontinuierliche Gruppen. Hamb. Abh. 4 (1926), 15-32. DOI 10.1007/BF02950716
[22] O. Wyler: Convenient categories for topology. General Topology Appl. 3 (1973), 225-242. DOI 10.1016/0016-660X(72)90014-1 | MR 0324622 | Zbl 0264.54018
Partner of
EuDML logo