[3] R. Frič J. Gerlits:
On the sequential order. Math. Slovaca 42 (1992), 505-512.
MR 1195044
[4] R. Frič M. Hušek V. Koutník:
Sequential groups, k-groups and other categories of continuous algebras. to appear.
MR 1244367
[5] R. Frič F. Zanolin:
Sequential convergence in free groups. Rend. Ist. Matem. Univ. Trieste 78 (1986), 200-218.
MR 0928331
[6] R. Frič F. Zanolin:
Fine convergence in free groups. Czechoslovak Math. J. 36 (1983), 134-139.
MR 0822875
[7] A. Kaminski:
On characterization of topological convergence. Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 50-70.
MR 0639315
[10] V. Koutník:
Closure and topological sequential convergence. Convergence structures 1984, (Proc. Conference on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 199-204.
MR 0835486
[11] W. F. LaMartin:
On the foundations of k-group theory. Diss. Math. 146(1911).
MR 0480835
[12] W. F. LaMartin:
Epics in the category of $T_2$ k-groups need not have dense range. Colloq. Math. 30 (1976), 37-41.
MR 0427524 |
Zbl 0353.22001
[14] P. Mikusinski:
Problems posed at the Conference. Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 110-112.
MR 0639325
[15] J. Novák:
On convergence groups. Czechoslovak Math. J. 20(1970), 357-374.
MR 0263973
[17] P. J. Nyikos:
Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Amer. Math. Soc. 88(1981), 793-801.
MR 0630057 |
Zbl 0474.22001
[20] H.-F. Porst:
Free algebras over cartesian closed topological categories. General Topology and its Relation to Modern Analysis and Algebra, VI, (Proc Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 437-450.
MR 0952627