Previous |  Up |  Next

Article

Keywords:
perimeter; divergence theorem; the divergence theorem of Gauss-Ostrogradski
Summary:
This is an expository paper dealing with Jan Marik's results concerning perimeter and the divergence theorem of Gauss-Green-Ostrogradski.
References:
[1] M. Chlebík: Tricomi Potentials. Thesis presented in the Mathematical Institute of the Czechoslovak Academy of Sciences in 1988. (In Slovak.)
[2] E. De Giorgi: Su una teoria generale della misura (r-1)-dimensionale in uno spazio ad r dimensioni. Annali di Matematica (IV) 36 (1954), 191-213. DOI 10.1007/BF02412838 | MR 0062214 | Zbl 0055.28504
[3] E. De Giorgi: Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio ad r dimensioni. Ricerche di Matematica IV (1955), 94-113. Zbl 0066.29903
[4] H. Federer: Geometric measure theory. Springer-Verlag, Berlin 1969. MR 0257325 | Zbl 0176.00801
[5] K. Krickegerg: Distributionen, Funktionen beschränkter Variation und Lebesgueschei Inhalt nichtparametrischer Flächen. Annali di Matematica pura ed applicada (IV) XLIV (1957), 105-134. MR 0095922
[6] J. Mařík: The surface integral. Časopis Pěst. Mat. 81 (1956), 79-82. (In Czech.) MR 0089891
[7] J. Mařík: The surface integral. Czechoslovak Math. J. 6(81) (1956), 522-558. MR 0089891
[8] J. Mařík: A note to the length of a Jordan curve. Časopis Pěst. Mat. 83 (1958), 91-96. (In Czech.) MR 0095243
[9] A. I. Voľpert: BV spaces and quasilinear equations. Matem. sbornik 73 (115) (1967), No. 2, 255-302. (In Russian.) MR 0216338
Partner of
EuDML logo