Article
Keywords:
perfect $b$-matching; beta-non-negative and beta-positive graphs; systems of linear equations
Summary:
The paper is concerned with the existence of non-negative or positive solutions to $Af=\beta$, where $A$ is the vertex-edge incidence matrix of an undirected graph. The paper gives necessary and sufficient conditions for the existence of such a solution.
References:
[2] S. Jezný M. Trenkler:
Characterization of Magic Graphs. Czech. Math. J. 33 (1983), 435-438.
MR 0718926
[4] B. Grünbaum:
Convex Polytopes. Interscience, London 1967.
MR 0226496
[5] L. Lovász M. D. Plummer:
Matching Theory. Akadémiai kiadó, Budapest 1986.
MR 0859549
[6] Ľ. Šándorová M. Trenkler:
On a Generalization of Magic Graphs. Proc. of the 7th Hungarian Colloquium on Combinatorics, North Holland, 1988, 447-452.
MR 1221584