Previous |  Up |  Next

Article

Keywords:
Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue
Summary:
Notions as the numerical range $W(S,T)$ and the spectrum $\s(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.
References:
[1] F. Bonsall B. E. Cain H. Schneider: The numerical range of continuous mapping of a normed space. Aequationes Math. 2 (1968), 86-93. MR 0232226
[2] F. E. Browder: Problemes non-lineaires. Univ. Montreal Press, 1966. Zbl 0153.17302
[3] V. Burýšková: Definition und grudlegende Eigenschaften des nichtlinearen adjungierten Operators. Časopis Pěst. Mat. 103 (1978), 186-201. MR 0477929
[4] V. Burýšková: Adjoint nonlinear opeгators. Dissertation, Praha, 1977. (In Czech.)
[5] S. Burýšek: Some remarks on polynomial operators. Comment. Math. Univ. Carolin. 10,2 (1969), 285-306. MR 0251560
[6] S. Burýšek: On spectra of nonlinear operators. Comment. Math. Univ. Carolin. 11,4 (1970), 727-743. MR 0288639
[7] S. Burýšek V. Burýšková: Small solutions of a nonlineaг operator equation. Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 15 (1982), No. 1, 51-54. MR 0910347
[8] S. Burýšek V. Burýšková: Some results from theory of homogeneous operators. CTU Seminar, 1994.
[9] V. Burýšková S. Burýšek: On the convexity of the numeгical range of homogeneous operatoгs. Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 34 (1994), No. 2, 25-33.
[10] V. Burýšková: Některé výsledky z teorie nelineárních operátorů a operátorových rovnic. Habilitation Thesis, Praha, 1994. (In Czech.)
[11] S. Burýšek V. Burýšková: On the aproximative spectrum of the couple of homogeneous operators. Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 35 (1995), No. 1, 5-16.
[12] G. Conti E. DePascale: The numerical range in the nonlineaг case. Boll. Un. Mat. Ital. B(5), 15 (1978), 210-216. MR 0493572
[13] J. A. Canavati: A theory of numerical range for nonlinear operators. J. Funct. Anal. 33 (1979), 231-258. DOI 10.1016/0022-1236(79)90067-3 | MR 0549114 | Zbl 0445.47045
[14] M. Furi A. Vignoli: Spectrum of nonlinear maps and bifuгcations in the nondifferentiable case. Ann. Math. Pura Appl. (4) 113 (1977), 265-285. MR 0493558
[15] S. K. Kyong Y. Youngoh: On the numerical range for nonlinear operators. Bull. Korean Math. Soc. 21 (1984), No. 2, 119-126. MR 0768468
[16] J. Prüss: A characterization of uniform convexity and applications to accretive operators. Hiroshima Math. J., 11 (1981), No. 2, 229-234. DOI 10.32917/hmj/1206134097 | MR 0620534
[17] A. Rhodius: Deг numeгische Wertebereich für nicht netwendig lineare Abbildungen in lokalkonvexen Räumen. Math. Nachr. 72 (1976), 169-180. DOI 10.1002/mana.19760720115 | MR 0410501
[18] A. E. Taylor: Úvod do funkcionální analýzy. Academia, Praha, 1973.
[19] M. M. Vajnberg: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Moskva, 1972. (In Russian.)
[20] Verma U. Ram: Numerical range and related nonlinear functional equations. Czechoslovak Math. J. 42 (117) (1992), No. 3, 503-513. MR 1179314 | Zbl 0781.47048
[21] K. Yosida: Functional Analysis. Spгinger-Verlag, Berlin, 1965. Zbl 0126.11504
[22] E. H. Zarantonello: The closure of the numerical range contains the spectrum. Pacific J. Math. 22 (1967), No. 3, 575-595. DOI 10.2140/pjm.1967.22.575 | MR 0229079 | Zbl 0152.34602
Partner of
EuDML logo