Article
Keywords:
Riemannian manifold; constant principal Ricci curvatures
Summary:
The first author and F. Prufer gave an explicit classification of all Riemannian 3-manifolds with distinct constant Ricci eigenvalues and satisfying additional geometrical conditions. The aim of the present paper is to get the same classification under weaker geometrical conditions.
References:
[1] E. Boeckx O. Kowalski. L. Vanhecke:
Riemannian Manifolds of Conullity Two. World Scientific Publishers. 1990
MR 1462887
[2] P. Bueken:
Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho_1 = \rho_2 \neq \rho_3$. J. Math Phys. 37 (1990), 4062-4075.
DOI 10.1063/1.531626 |
MR 1400834
[3] O. Kowalski:
A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho_1 = \rho_2 \neq \rho_3$. Nagoya Math. J. 132 (1993), 1-36.
MR 1253692
[4] O. Kowalski:
Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Comment. Math. Univ. Carotin. 34 (1993), 451-457.
MR 1243077 |
Zbl 0789.53024
[5] O. Kowalski F. Prüfer:
On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Math. Ann. 300 (1994), 17-28.
DOI 10.1007/BF01450473 |
MR 1289828
[6] O. Kowalski F. Prüfer:
A classification of special Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Z. Anal. Anwendungen 14 (1995), 43-58.
DOI 10.4171/ZAA/662 |
MR 1327491
[7] O. Kowalski M. Sekizawa:
Local isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho_1 = \rho_2 \neq \rho_3 > 0$. Arch. Math. (Brno) 32 (1996), 137-145.
MR 1407345
[8] O. Kowalski Z. Vlášek:
Classification of Riemannian 3-manifolds with distinct constant principal Ricci curvatures. Bull. Belg, Math. Soc. Simon Stevin 5 (1998), 59-68.
DOI 10.36045/bbms/1103408965 |
MR 1610731
[9] I. M. Singer:
Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1990), 685-697.
MR 0131248
[10] A. Spiro F. Tricerri:
3-diinensioual Riemannian metrics with prescribed Ricci principal curvatures. J. Math. Pures. Appl. 74 (1995), 253-271.
MR 1327884