Article
Keywords:
categorical equivalence; bounded \BCK-algebra; \MV-algebra; \DRl-semigroup
Summary:
In the paper it is proved that the category of \MV-algebras is equivalent to the category of bounded \DRl-semigroups satisfying the identity $1-(1-x)=x$. Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative \BCK-algebras.
References:
[2] C. C. Chang:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
MR 0122718 |
Zbl 0093.01104
[3] R. Cignoli:
Free lattice-ordered abelian groups and varieties of MV-algebras. Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113-118.
MR 1332526 |
Zbl 0827.06012
[4] K. Iséki, S. Tanaka:
An introduction to the theory of BCK-algebras. Math. Japonica. 23 (1978), 1-26.
MR 0500283
[5] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacky Univ. Olomouc, 1996.
[6] T. Kovář:
Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca. To appear.
MR 1804468
[7] F. Lacava:
Some properties of L-algebras and existencially closed L-algebras. Boll. Un. Mat. Ital., A(5) 16 (1979), 360-366. (In Italian.)
MR 0541775
[9] D. Mundici:
MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japonica 31 (1986), 889-894.
MR 0870978 |
Zbl 0633.03066
[13] T. Traczyk:
On the variety of bounded commutative BCK-algebras. Math. Japonica 24 (1979), 283-292.
MR 0550212 |
Zbl 0422.03038
[14] H. Yutani:
Quasi-commutative BCK-algebras and congruence relations. Math. Sem. Notes Kobe 5 (1977), 469-480.
MR 0498112 |
Zbl 0375.02053