[1] F. Buckley:
Self-centered graphs with a given radius. Proc. 10th S-E Conf. Combinatorics, Graph Theory and Computing. Boca Raton, 1979, pp. 211-215.
MR 0561047 |
Zbl 0426.05034
[2] F. Buckley F. Harary:
Distance in Graphs. Addison-Wesley, New York, 1990, 335 pp.
MR 1045632
[3] L. Caccetta:
On graphs that are critical with respect to the parameters: diameter, connectivity and edge-connectivity. Matematiche (Catania) 47 (1992), 213-229.
MR 1275856 |
Zbl 0793.05079
[4] G. Chartrand, Songlin Tian:
Distance in digraphs. Mathematics and Computer Models, Preprint, 1991, 15 pp.
MR 1486881
[5] Yu Xiang Du, Lijie Shi, Xiaodong Zhao:
The structure of upper radius critical graphs. J. Natur. Sci. Math. 36 (1996), 77-82.
MR 1627192
[6] R. D. Dutton S. R. Medidi. R. C. Brigham:
Changing and unchanging the radius of a graph. Linear Algebra Appl. 217 (1995), 67-82.
MR 1322543
[9] G. Sh. Fridman:
On radially critical oriented graphs. Dokl. Akad. Nauk 212 (1973), 556-559. (In Russian.)
MR 0412008
[10] F. Gliviak:
On radially critical graphs. Recent Advances in Graph Theory- Proc. Symp. Prague 1974. Academia, Praha, 1975, pp. 207-221.
MR 0384613
[11] F. Gliviak:
On the structure of radially critical graphs. Graphs, Hypergraphs and Block Systems. Proc. Symp. Zielona Gora, Poland, 1976, pp. 69-73.
MR 0384613 |
Zbl 0345.05121
[12] F. Gliviak M. Knor L. Šoltés:
On radially maximal graphs. Australasian J. Combin. 9 (1994), 275-284.
MR 1271207
[13] F. Gliviak M. Knor L. Šoltés:
Two-radially maximal graphs with special centers. Math. Slovaca 45 (1995), 227-233.
MR 1361815
[14] F. Gliviak M. Knor:
On radially extremal digraphs. Math. Bohem. 120 (1995), 41-55.
MR 1336945
[15] N. Graham F. Harary:
Changing and unchanging the diameter of a hypercube. Discrete Appl. Math. 37/38 (1992), 265-274.
MR 1176857
[16] F. Harary:
Changing and unchanging invariants for graphs. Bull. Malaysian Math. Soc. (2) 5 (1982), 73-78.
MR 0700121 |
Zbl 0512.05035
[18] T. W. Haynes L. M. Lawson R. C. Brigham R. D. Dutton:
Changing and unchanging of the graphical invariants: Minimum and maximum degree, maximum clique size, node independence number and edge independence number. Congr. Numer. 72 (1990), 239-252.
MR 1041828
[21] Katsumi Inoue:
Radius of 3-connected graphs. SUT J. Math. 32 (1996), 83-90.
MR 1401106
[22] Sh. M. Ismailov:
The number of arcs of a digraph of a given radius with a given number of vertices and strong components. Dokl. Akad. Nauk Azerbaidzhana 27 (1971), 8-12. (In Russian.)
MR 0294177
[23] Ju. Nishanov: On radially critical graphs with maximal diameter. Voprosy algebry, teorii chisel, diferencialnych i integralnych uravneniy. Samarkand State University, Samarkand, 1973, pp. 138-147. (In Russian.)
[24] Ju. Nishanov: On two classes of radially critical graphs. Voprosy algebry i teorii chisel. Samarkand State University, Samarkand, 1980, pp. 16-22. (In Russian.)
[25] Ju. Nishanov: On radially critical graphs with radius two. Modeli i algoritmy prikiadnoj matematiki. Samarkand, 1989. pp. 125-130. (In Russian.)
[26] Ju. Nishanov: On unicyclic radially critical graphs. Voprosy algebry i teorii chisel. Samarkand State University. Samarkand, 1990. pp. 54-65. (In Russian.)
[27] J. Plesnik: Graph Algorithms. Veda, Bratislava. 1983, 343 pp. (in Slovak.)
[28] Tomomi Segawa:
Radius increase caused by edge deletion. SUT J. Math. 30 (1994), 159-162.
MR 1311012
[29] Songlin Tian:
Sum distance in digraphs. Congr. Numer. 78 (1990), 179 -192.
MR 1140482
[30] Songlin Tian, Ch. E. Williams:
Detour distance in digraphs. Graph Theory and Applications. Proc. Int. Conference, vol. 2, Y. Alavi. A. Schweuk (eds.). John Wiiey and Sons, 1995, pp. 1155-1165.
MR 1405891
[31] V. G. Vizing:
On the number of edges in a graph with given radius. Dokl. Akad. Nauk 173 (1967). 1245-1246. (In Russian.)
MR 0210622
[32] A. A. Zykov:
Fundamentals of Graph Theory. Nauka. Moskva, 1987, 381 pp. (In Russian.)
MR 0909295