[1] Assing S., Schmidt W.:
Continuous Strong Markov Processes in Dimension 1 - A Stochastic Calculus Approach. Lecture Notes in Math. 1688, Springer, Berlin, 1998.
DOI 10.1007/BFb0096157 |
MR 1724313
[3] Bertoin J.:
Une application du calcul du nombre de montées et de descentes aux fonctions de martingales locales continues. Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 201-207.
MR 0953117 |
Zbl 0646.60056
[4] Bouleau N., Yor M.:
Sur la variation quadratique des temps locaux de certaines semi-martingales. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 491-494.
MR 0612544
[5] Çinlar E., Jacod J., Protter P., Sharpe M. J.:
Semimartingales and Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 54 (1980), 161-219.
MR 0597337 |
Zbl 0443.60074
[8] Föllmer H., Protter P., Shiryaev A.N.:
Quadratic covariation and an extension of Itô's formula. Bernoulli 1 (1995), 149-169.
DOI 10.2307/3318684 |
MR 1354459
[9] Fukuskima M., Oshima Y., Takeda M.:
Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994.
MR 1303354
[10] Protter P.: Stochastic Integration and Differential Equations. Springer, Berlin, 1992.
[11] Revuz D., Yor M.:
Continuous Martingales and Brownian Motion. 2nd edition, Springer, Berlin, 1994.
MR 1303781 |
Zbl 0804.60001
[14] Russo F., Vallois P.:
Itô formula for $C^1$ -functions of semimartingales. Probab. Theory Related Fields 104 (1996), 27-41.
DOI 10.1007/BF01303801 |
MR 1367665
[15] Schmidt W.: Über streng Markovsche stetige Semimartingale. Habilitationsschrift. Friedrich-Schiller-Universität, Jena.
[17] Wolf J.:
Zur stochastischen Analysis stetiger lokaler Dirichletprozesse. Dissertation. Friedrich-Schiller-Universität, Jena.
Zbl 0879.60061