Previous |  Up |  Next

Article

Keywords:
Dirichlet process; local time; reflected Brownian motion
Summary:
We give a complete analytical characterization of the functions transforming reflected Brownian motions to local Dirichlet processes.
References:
[1] Assing S., Schmidt W.: Continuous Strong Markov Processes in Dimension 1 - A Stochastic Calculus Approach. Lecture Notes in Math. 1688, Springer, Berlin, 1998. DOI 10.1007/BFb0096157 | MR 1724313
[2] Bertoin J.: Les processus de Dirichlet et tant qu' Espace de Banach. Stochastics 18 (1988), 155-168. DOI 10.1080/17442508608833406 | MR 0861819
[3] Bertoin J.: Une application du calcul du nombre de montées et de descentes aux fonctions de martingales locales continues. Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 201-207. MR 0953117 | Zbl 0646.60056
[4] Bouleau N., Yor M.: Sur la variation quadratique des temps locaux de certaines semi-martingales. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 491-494. MR 0612544
[5] Çinlar E., Jacod J., Protter P., Sharpe M. J.: Semimartingales and Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 54 (1980), 161-219. MR 0597337 | Zbl 0443.60074
[6] Föllmer H.: Calcul d'Itô sans probabilités. Sém. Prob. XV, Lecture Notes in Math. 850. Springer, Berlin, 1981, pp. 143-150. DOI 10.1007/BFb0088364 | MR 0622559 | Zbl 0461.60074
[7] Föllmer H.: Dirichlet processes. Lecture Notes in Math. 851. Springer, Berlin, 1981, pp. 476-478. DOI 10.1007/BFb0088738 | MR 0621001 | Zbl 0462.60046
[8] Föllmer H., Protter P., Shiryaev A.N.: Quadratic covariation and an extension of Itô's formula. Bernoulli 1 (1995), 149-169. DOI 10.2307/3318684 | MR 1354459
[9] Fukuskima M., Oshima Y., Takeda M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. MR 1303354
[10] Protter P.: Stochastic Integration and Differential Equations. Springer, Berlin, 1992.
[11] Revuz D., Yor M.: Continuous Martingales and Brownian Motion. 2nd edition, Springer, Berlin, 1994. MR 1303781 | Zbl 0804.60001
[12] Russo F., Vallois P.: Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993), 403-421. DOI 10.1007/BF01195073 | MR 1245252 | Zbl 0792.60046
[13] Russo F., Vallois P.: The generalized covariation process and Itô formula. Stochastic Process. Appl. 59 (1995), 81-104. DOI 10.1016/0304-4149(95)93237-A | MR 1350257 | Zbl 0840.60052
[14] Russo F., Vallois P.: Itô formula for $C^1$ -functions of semimartingales. Probab. Theory Related Fields 104 (1996), 27-41. DOI 10.1007/BF01303801 | MR 1367665
[15] Schmidt W.: Über streng Markovsche stetige Semimartingale. Habilitationsschrift. Friedrich-Schiller-Universität, Jena.
[16] Schmidt W.: On stochastic differential equations with reflecting barriers. Math. Nachr. 142 (1989), 135-148. DOI 10.1002/mana.19891420109 | MR 1017375 | Zbl 0699.60043
[17] Wolf J.: Zur stochastischen Analysis stetiger lokaler Dirichletprozesse. Dissertation. Friedrich-Schiller-Universität, Jena. Zbl 0879.60061
[18] Wolf J.: Transformations of semimartingales and local Dirichlet processes. Stochastics Stochastics Rep. 62 (1997), 65-101. DOI 10.1080/17442509708834128 | MR 1489182 | Zbl 0890.60043
[19] Wolf J.: An Itô formula for local Dirichlet processes. Stochastics Stochastics Rep. 62 (1997), 103-115. DOI 10.1080/17442509708834129 | MR 1489183 | Zbl 0890.60044
Partner of
EuDML logo