Article
Keywords:
best diophantine approximation; continued fraction; diophantine approximation
Summary:
Let $\xi=[a_0;a_1,a_2,\dots,a_i,\dots]$ be an irrational number in simple continued fraction expansion, $p_i/q_i=[a_0;a_1,a_2,\dots,a_i]$, $M_i=q_i^2 |\xi-p_i/q_i|$. In this note we find a function $G(R,r)$ such that
\align&M_{n+1}<R\text{ and }M_{n-1}<r\text{ imply }M_n>G(R,r),
&M_{n+1}>R\text{ and }M_{n-1}>r\text{ imply }M_n<G(R,r). \endalign
Together with a result the author obtained, this shows that to find two best approximation functions $\tilde H(R,r)$ and $\tilde L(R,r)$ is a well-posed problem. This problem has not been solved yet.
References:
[1] F. Bagemihl, J. R. McLaughlin:
Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions. J. Reine Angew. Math. 221 (1966), 146-149.
MR 0183999 |
Zbl 0135.11104
[2] E. Borel: Contribution a l'analyse arithmetique du continu. J. Math. Pures Appl. 9 (1903), 329-375.
[3] M. Fujiwara: Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen. Tôhoku Math. J. 14 (1918), 109-115.
[4] A. Hurwitz:
Über die angenäherte Darstellung der irrationalzahlen durch rationale Bruche. Math. Ann. 39 (1891), 279-284.
DOI 10.1007/BF01206656 |
MR 1510702
[6] M. Miller:
Über die Approximation reeller Zahlen durch die Näherungsbruche ihres regelmässigen Kettenbruches. Arch. Math. (Basel) 6 (1955), 253-258.
DOI 10.1007/BF01899402 |
MR 0069850
[8] O. Perron:
Die Lehre von den Kettenbruchen I, II. 3rd ed. Teubner, Leipzig, 1954.
MR 0064172
[9] B. Segre:
Lattice points in the infinite domains and asymmetric Diophantine approximation. Duke Math. J. 12 (1945), 337-365.
MR 0012096