Article
Keywords:
local derivation; standard operator algebra; locally inner derivation; symmetric norm ideal
Summary:
It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.
References:
[1] M. Brešar, P. Šemrl:
Mappings which preserve idempotents, local automorphisms and local derivations. Canad. J. Math. 45 (1993), 483-496.
DOI 10.4153/CJM-1993-025-4 |
MR 1222512
[2] P. R. Chernoff:
Representations, automorphisms and derivations of some operator algebras. J. Funct. Anal. 12 (1973), 275-289.
MR 0350442 |
Zbl 0252.46086
[4] P. R. Halmos:
Hilbert Space Problem Book. D. Van Nostrand Company, Princeton, New York, 1967.
MR 0208368 |
Zbl 0144.38704
[6] D. R. Larson, A. R. Sourour:
Local derivations and local automorphisms of B(X). Proc. Sympos. Pure Math. 51. Part 2, Providence, Rhode Island 1990, pp. 187-194.
MR 1077437
[10] B. Simon:
Trace Ideals and Their Applications. Cambridge University Press, Cambridge, 1979.
MR 0541149 |
Zbl 0423.47001