Previous |  Up |  Next

Article

Keywords:
Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian; local inverse problem to the calculus of variations; global inverse problem to the calculus of variations
Summary:
Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.
References:
[1] I. M. Anderson: The variational bicomplex. Preprint, Department of Mathematics, Utah State University, Logan, Utah, 1989, pp. 289. MR 1188434
[2] I. M. Anderson аnd T. Duchаmp: On the existence of global variational principles. Am. J. Math. 102 (1980), 781-868. DOI 10.2307/2374195 | MR 0590637
[3] D. Dedecker аnd W.M. Tulczyjew: Spectгal sequences and the inverse problem of the calculus of variations. Internat. Coll. on Diff. Geom. Methods in Math. Physics, Aix-en-Provence Sept. 1989, in: Lectuгe Notes in Math. vol. 836, Springer, Berlin, 1980.
[4] H. Helmholtz: Über die Physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100 (1987), 137-166.
[5] L. Klаpkа: Euler-Lagrange expressions and closed two-foгms in higher order mechanics. in: Geometrical Methods in Physics, Pгoc. Conf. on Diff. Geom. and its Appl., Nové Mӗsto na Moravӗ, Czechoslovakia, 1983 (D. Ҟrupka, ed.), J.E. Purkynӗ Univ., Brno, Czechoslovakia, 1984, pp. 149-153. MR 0793205
[6] D. Krupkа: Some geometric aspects of variational problems in fìbeгed manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65.
[7] D. Krupkа: On the local structure of the Euler-Lagrange mapping of the calculus of variations. in: Proc. Conf. on Diff. Geom. and Its Appl. 1980 (O. Kowalski, ed.), Universita Karlova, Prague, 1981, pp. 181-188. MR 0663224
[8] D. Krupkа: Lepagean forms in higher order variational theory. in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Pгoc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197-238. MR 0773488
[9] D. Krupkа: Geometry of lagrangean structuгes 2. Arch. Math. (Bгno) 22 (1986), 211-228. MR 0868536
[10] D. Krupkа: Geometry of lagrangean structures 3. Proc. Winter School of Abstгact Analysis, Sгní, Czechoslovakia, 1986, Suppl. ai Rend. del Circ. Mat. di Palermo, vol. 14, 1987, pp. 187-224. MR 0920855
[11] D. Krupka: Variational sequences on fìnite order jet spaces. in: Diffeгential Geometry and Its Applications, Proc. Conf., Brno, Czechoslovakia, 1989 (J. Janyška and D. Krupka, eds.), Woгld Scientific, Singapore, 1990, pp. 236-254. MR 1062026
[12] O. Krupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22 (1986), 97-120. MR 0868124
[13] R. Macjuk: On the existence of a lagrangian for a system of ordinary diffeгential equations. Mat. metody fiz.-mech. polja 13 (1981), 30-34. (In Russian.)
[14] A. Mayer: Die Бxistenzbedingungen eines kinetischen Potentiales. Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896), 519-529.
[15] Ғ. Takens: A global version of the inverse pгoblem of the całculus of variations. J. Diff. Geom. 14 (1979), 543-562. DOI 10.4310/jdg/1214435235 | MR 0600611
[16] E. Tonti: Variational formulation of nonlinear differential equatюns I, II. Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969), 137-165, 262-278.
[17] W M. Tulczyjew: Sur la différentielle de Lagrange. C. R. Acad. Sci. Paгis A 280 (1975), 1295-1298. MR 0377987 | Zbl 0314.58018
[18] M. M. Veiberg: Variational Methods in the Theory of Non-Linear Operators. GITL, Moscow, 1959. (In Russian.)
[19] A. L. Vanderbauwhede: Potential operators and variational principles. Hadronic J. 2 (1979), 620-641. MR 0537234 | Zbl 0431.47032
[20] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 19 (1978), 144-148.
[21] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, II. The nonlinear theory. J. Math. Anal. Appl. 100 (1984), 1-40, 41-129. DOI 10.1016/0022-247X(84)90071-4 | MR 0739951
Partner of
EuDML logo