Previous |  Up |  Next

Article

Keywords:
commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces; invariant subspace
Summary:
In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.
References:
[1] Bercovici H.: Operator Theory and Arithmetic in $H^{\infty}$. Mathemaical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988. MR 0954383
[2] Bercovici H., Foiaş C., Sz.- Nagy B.: Reflexive and hyper-reflexive operators of class $C_0$. Acta Sci. Math. 43 (1981), 5-13. MR 0621348
[3] Deddens J. A., Fillmore P. A.: Reflexive Linear Transformations. Linear Algebra Appl. 10 (1975), 89-93. MR 0358390 | Zbl 0301.15011
[4] Fillmore P. A., Herrero, Domingo A., Longstaff W. E.: The Hyperinvariant Subspace Lattice of a Linear Transformation. Linear Algebra Appl. 17 (1977), 125-132. MR 0470707 | Zbl 0359.47005
[5] Sz.-Nagy B., Foiaş, C: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam - Akadémiai Kiadó, Budapest, 1970. MR 0275190 | Zbl 0201.45003
[6] Zajac M.: On the singular unitary part of a contraction. Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384. MR 1082520 | Zbl 0723.47007
[7] Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, 1991. MR 1091716 | Zbl 0729.15001
Partner of
EuDML logo