Article
Keywords:
commutant; reflexivity; hyperreflexive operators on finite dimensional Hilbert spaces; invariant subspace
Summary:
In this paper a complete characterization of hyperreflexive operators on finite dimensional Hilbert spaces is given.
References:
[1] Bercovici H.:
Operator Theory and Arithmetic in $H^{\infty}$. Mathemaical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988.
MR 0954383
[2] Bercovici H., Foiaş C., Sz.- Nagy B.:
Reflexive and hyper-reflexive operators of class $C_0$. Acta Sci. Math. 43 (1981), 5-13.
MR 0621348
[3] Deddens J. A., Fillmore P. A.:
Reflexive Linear Transformations. Linear Algebra Appl. 10 (1975), 89-93.
MR 0358390 |
Zbl 0301.15011
[4] Fillmore P. A., Herrero, Domingo A., Longstaff W. E.:
The Hyperinvariant Subspace Lattice of a Linear Transformation. Linear Algebra Appl. 17 (1977), 125-132.
MR 0470707 |
Zbl 0359.47005
[5] Sz.-Nagy B., Foiaş, C:
Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam - Akadémiai Kiadó, Budapest, 1970.
MR 0275190 |
Zbl 0201.45003
[6] Zajac M.:
On the singular unitary part of a contraction. Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384.
MR 1082520 |
Zbl 0723.47007