Previous |  Up |  Next

Article

References:
[1] M. Avriel, A. C. Williams: Complementary geometric programming. SIAM J. Appl. Math. /P (1970), 125-141. MR 0267901 | Zbl 0319.90035
[2] M. Avriel, A. C. Williams: An extension of geometric programming with applications in engineering optimization. J. Engng. Math. 5 (1971), 187-194.
[3] P. P. Bansal, S. E. Jacobsen: Characterization of local solution for a class of nonconvex programs. J. Optim. Theory Appl. 15 (1975), 127-131. MR 0401151
[4] R. J. Hillestad: Optimization problems subject to a budged constraint with economies of scale. Oper. Res. 23 (1975), 1091-1098. MR 0434447
[5] R. J. Hillestad, S. E. Jacobsen: Linear programs with an additional reverse convex constraint. Appl. Math. Optim. 6 (1980), 257-269. MR 0576263 | Zbl 0435.90065
[6] R. J. Hillestad, S. E. Jacobsen: Reverse convex programming. Appl. Math. Optim. 6 (1980) 63-78. MR 0557055 | Zbl 0448.90044
[7] R. Meyer: The validity of a family of optimization methods. SIAM J. Control 8 (1970), 41-54. MR 0312915 | Zbl 0194.20501
[8] J. B. Rosen: Iterative solution of nonlinear optimal control problems. SIAM J. Control 4 (1766), 223-244. MR 0189877 | Zbl 0229.49025
[9] N. V. Thoai, H. Tuy: Convergent algorithms for minimizing a concave function. Math. Oper. Res. 4 (1980), 556-565. MR 0593646 | Zbl 0472.90054
[10] H. Tuy: Concave programming under linear constraints. Dokl. Akad. Nauk SSSR 159 (1964), 32-35. MR 0181465
[11] H. Tuy: Conical algorithm for solving a class of complementarity problems. Preprint series 18 (1981), Hanoi. MR 0683317 | Zbl 0618.90090
[12] U. Ueing: A combinatorical method to compute a global solution of certain nonconvex optimization problems. In: Numerical Methods for Non-Linear Optimization (F. A. Lootsma ed.), pp. 223-230, Academic Press, New York 1972. MR 0429118
Partner of
EuDML logo