Previous |  Up |  Next

Article

References:
[1] R. Beran: An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978), 292 - 313. MR 0518885 | Zbl 0378.62051
[2] P. J. Bickel: The 1980 Wald Memorial Lectures - On adaptive estimation. Ann. Statist. 10 (1982), 647-671.
[3] Y. Dodge: An introduction to statistical data analysis ii-norm based. In: Statistical Data Analysis Based on the Ii-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987. MR 0949217
[4] J. Jurečková: Regression quantiles and trimmed least square estimator under a general design. Kybernetika 20 (1984), 345 - 357. MR 0776325
[5] F. R. Hampel E. M. Ronchetti P. J. Rousseeuw, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions. J. Wiley, New York 1986. MR 0829458
[6] G. Heimann: Adaptive und robuste Schatzer in Regression modellen. Ph.D. Dissertation, Institut fur Math. Stochastik, Universitat Hamburg 1988.
[7] R. Koenker: A lecture read at Charles University during his visit in Pгague 1989. Zbl 0736.62060
[8] R. Koenker, G. Basset: Regгession quantiles. Econometгica 46 (1978), 33 - 50. MR 0474644
[9] H. Koul, F. DeWet: Minimum distance estimation in a linear гegression model. Ann. Statist. 11 (1983), 921 -932. MR 0707942
[10] R. A. Maronna, V. J. Yohai: Asymptotic behaviouг of general M-estimates foг гegression and scale with random carriers. Z. Wahrsch. verw. Gebiete 58 (1981), 7 - 20. MR 0635268
[11] P.J. Rousseeuw, A.M. Leroy: Robust Regression and Outlieг Detection. J. Wiley, New York 1987. MR 0914792
[12] D. Ruppert, R. J. Caгroll: Tгimmed least squaгes estimation in linear model. J. Amer. Statist. Assoc. 75 (1980), 828-838. MR 0600964
[13] A. V. Skorokhod: Limìt theoгemsfor stochastic processes. Teor. Veгoyatnost. i Pгimenen. 1 (1956), 261 - 290.
[14] C. Stein: Efficient nonpaгametric testing and estimation. In: Proc. Thiгd Berkeley Symp. Math. Statìst. Prob. 1 (1956), 187 - 196. Univ. of California Pгess, Berkeley, Calif. 1956. MR 0084921
[15] C. Stone: Adaptive maximum likelihood estimators of a location parameteг. Ann. Statist. 3 (1975), 267 - 284. MR 0362669
[16] J. Á. Víšek: What is adaptivity of regression analysis intended for?. In: Transactions of ROBUST'90, JČMF, Prague 1990, pp. 160 - 181.
[17] J. Á. Víšek: Adaptive Estimation in Lineaг Regression Model. Research Repoгt No. 1642, Institute of Information Theory and Automatiou, Czechosbvak Academy of Sciences, Prague 1990.
[18] J. Á. Víšek: Adaptive Maximum-likelihood-like Estimation in Linear Model. Research Report No. 1654, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.
[19] J. Á. Víšek: Adaptive estimation in linear гegression model and test of symmetгy of гesiduals. Proceedings of the Second International Woгkshop on Model-Oriented Data Anaylsis, Saint Kyгik, Plovdiv, Bulgaria 1990 (to appeaг).
[20] J. Á. Víšek: Adaptive estimation in linear regression model. Paгt 1: Consistency. Kybernetika 28 (1992), 1,26-36. MR 1159872
Partner of
EuDML logo